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Preface

This book introduces the fundamental concepts nec-
essary for designing, using, and implementing
database systems and database applications. Our presentation stresses the funda-
mentals of database modeling and design, the languages and models provided by
the database management systems, and database system implementation tech-
niques. The book is meant to be used as a textbook for a one- or two-semester
course in database systems at the junior, senior, or graduate level, and as a reference
book. Our goal is to provide an in-depth and up-to-date presentation of the most
important aspects of database systems and applications, and related technologies.
We assume that readers are familiar with elementary programming and data-
structuring concepts and that they have had some exposure to the basics of com-
puter organization.

New to This Edition

The following key features have been added in the sixth edition:

B A reorganization of the chapter ordering to allow instructors to start with
projects and laboratory exercises very early in the course

B The material on SQL, the relational database standard, has been moved early
in the book to Chapters 4 and 5 to allow instructors to focus on this impor-
tant topic at the beginning of a course

B The material on object-relational and object-oriented databases has been
updated to conform to the latest SQL and ODMG standards, and consoli-
dated into a single chapter (Chapter 11)

B The presentation of XML has been expanded and updated, and moved ear-
lier in the book to Chapter 12

B The chapters on normalization theory have been reorganized so that the first
chapter (Chapter 15) focuses on intuitive normalization concepts, while the
second chapter (Chapter 16) focuses on the formal theories and normaliza-
tion algorithms

B The presentation of database security threats has been updated with a dis-
cussion on SQL injection attacks and prevention techniques in Chapter 24,
and an overview of label-based security with examples

vii
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Our presentation on spatial databases and multimedia databases has been
expanded and updated in Chapter 26

A new Chapter 27 on information retrieval techniques has been added,
which discusses models and techniques for retrieval, querying, browsing,
and indexing of information from Web documents; we present the typical
processing steps in an information retrieval system, the evaluation metrics,
and how information retrieval techniques are related to databases and to
Web search

The following are key features of the book:

A self-contained, flexible organization that can be tailored to individual
needs

A Companion Website (http://www.aw.com/elmasri) includes data to be
loaded into various types of relational databases for more realistic student
laboratory exercises

B A simple relational algebra and calculus interpreter

® A collection of supplements, including a robust set of materials for instruc-

tors and students, such as PowerPoint slides, figures from the text, and an
instructor’s guide with solutions

Organization of the Sixth Edition

There are significant organizational changes in the sixth edition, as well as improve-
ment to the individual chapters. The book is now divided into eleven parts as
follows:

Part 1 (Chapters 1 and 2) includes the introductory chapters

The presentation on relational databases and SQL has been moved to Part 2
(Chapters 3 through 6) of the book; Chapter 3 presents the formal relational
model and relational database constraints; the material on SQL (Chapters 4
and 5) is now presented before our presentation on relational algebra and cal-
culus in Chapter 6 to allow instructors to start SQL projects early in a course
if they wish (this reordering is also based on a study that suggests students
master SQL better when it is taught before the formal relational languages)

The presentation on entity-relationship modeling and database design is
now in Part 3 (Chapters 7 through 10), but it can still be covered before Part
2 if the focus of a course is on database design

Part 4 covers the updated material on object-relational and object-oriented
databases (Chapter 11) and XML (Chapter 12)

Part 5 includes the chapters on database programming techniques (Chapter
13) and Web database programming using PHP (Chapter 14, which was
moved earlier in the book)

Part 6 (Chapters 15 and 16) are the normalization and design theory chapters
(we moved all the formal aspects of normalization algorithms to Chapter 16)


http://www.aw.com/elmasri

® Part 7 (Chapters 17 and 18) contains the chapters on file organizations,
indexing, and hashing

® Part 8 includes the chapters on query processing and optimization tech-
niques (Chapter 19) and database tuning (Chapter 20)

B Part 9 includes Chapter 21 on transaction processing concepts; Chapter 22
on concurrency control; and Chapter 23 on database recovery from failures

B Part 10 on additional database topics includes Chapter 24 on database secu-
rity and Chapter 25 on distributed databases

® Part 11 on advanced database models and applications includes Chapter 26
on advanced data models (active, temporal, spatial, multimedia, and deduc-
tive databases); the new Chapter 27 on information retrieval and Web
search; and the chapters on data mining (Chapter 28) and data warehousing
(Chapter 29)

Contents of the Sixth Edition

Part 1 describes the basic introductory concepts necessary for a good understanding
of database models, systems, and languages. Chapters 1 and 2 introduce databases,
typical users, and DBMS concepts, terminology, and architecture.

Part 2 describes the relational data model, the SQL standard, and the formal rela-
tional languages. Chapter 3 describes the basic relational model, its integrity con-
straints, and update operations. Chapter 4 describes some of the basic parts of the
SQL standard for relational databases, including data definition, data modification
operations, and simple SQL queries. Chapter 5 presents more complex SQL queries,
as well as the SQL concepts of triggers, assertions, views, and schema modification.
Chapter 6 describes the operations of the relational algebra and introduces the rela-
tional calculus.

Part 3 covers several topics related to conceptual database modeling and database
design. In Chapter 7, the concepts of the Entity-Relationship (ER) model and ER
diagrams are presented and used to illustrate conceptual database design. Chapter 8
focuses on data abstraction and semantic data modeling concepts and shows how
the ER model can be extended to incorporate these ideas, leading to the enhanced-
ER (EER) data model and EER diagrams. The concepts presented in Chapter 8
include subclasses, specialization, generalization, and union types (categories). The
notation for the class diagrams of UML is also introduced in Chapters 7 and 8.
Chapter 9 discusses relational database design using ER- and EER-to-relational
mapping. We end Part 3 with Chapter 10, which presents an overview of the differ-
ent phases of the database design process in enterprises for medium-sized and large
database applications.

Part 4 covers the object-oriented, object-relational, and XML data models, and their
affiliated languages and standards. Chapter 11 first introduces the concepts for
object databases, and then shows how they have been incorporated into the SQL
standard in order to add object capabilities to relational database systems. It then

Preface
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covers the ODMG object model standard, and its object definition and query lan-
guages. Chapter 12 covers the XML (eXtensible Markup Language) model and lan-
guages, and discusses how XML is related to database systems. It presents XML
concepts and languages, and compares the XML model to traditional database
models. We also show how data can be converted between the XML and relational
representations.

Part 5 is on database programming techniques. Chapter 13 covers SQL program-
ming topics, such as embedded SQL, dynamic SQL, ODBC, SQLJ, JDBC, and
SQL/CLI. Chapter 14 introduces Web database programming, using the PHP script-
ing language in our examples.

Part 6 covers normalization theory. Chapters 15 and 16 cover the formalisms, theo-
ries, and algorithms developed for relational database design by normalization. This
material includes functional and other types of dependencies and normal forms of
relations. Step-by-step intuitive normalization is presented in Chapter 15, which
also defines multivalued and join dependencies. Relational design algorithms based
on normalization, along with the theoretical materials that the algorithms are based
on, are presented in Chapter 16.

Part 7 describes the physical file structures and access methods used in database sys-
tems. Chapter 17 describes primary methods of organizing files of records on disk,
including static and dynamic hashing. Chapter 18 describes indexing techniques for
files, including B-tree and B*-tree data structures and grid files.

Part 8 focuses on query processing and database performance tuning. Chapter 19
introduces the basics of query processing and optimization, and Chapter 20 dis-
cusses physical database design and tuning.

Part 9 discusses transaction processing, concurrency control, and recovery tech-
niques, including discussions of how these concepts are realized in SQL. Chapter 21
introduces the techniques needed for transaction processing systems, and defines
the concepts of recoverability and serializability of schedules. Chapter 22 gives an
overview of the various types of concurrency control protocols, with a focus on
two-phase locking. We also discuss timestamp ordering and optimistic concurrency
control techniques, as well as multiple-granularity locking. Finally, Chapter 23
focuses on database recovery protocols, and gives an overview of the concepts and
techniques that are used in recovery.

Parts 10 and 11 cover a number of advanced topics. Chapter 24 gives an overview of
database security including the discretionary access control model with SQL com-
mands to GRANT and REVOKE privileges, the mandatory access control model
with user categories and polyinstantiation, a discussion of data privacy and its rela-
tionship to security, and an overview of SQL injection attacks. Chapter 25 gives an
introduction to distributed databases and discusses the three-tier client/server
architecture. Chapter 26 introduces several enhanced database models for advanced
applications. These include active databases and triggers, as well as temporal, spa-
tial, multimedia, and deductive databases. Chapter 27 is a new chapter on informa-
tion retrieval techniques, and how they are related to database systems and to Web



search methods. Chapter 28 on data mining gives an overview of the process of data
mining and knowledge discovery, discusses algorithms for association rule mining,
classification, and clustering, and briefly covers other approaches and commercial
tools. Chapter 29 introduces data warehousing and OLAP concepts.

Appendix A gives a number of alternative diagrammatic notations for displaying a
conceptual ER or EER schema. These may be substituted for the notation we use, if
the instructor prefers. Appendix B gives some important physical parameters of
disks. Appendix C gives an overview of the QBE graphical query language. Appen-
dixes D and E (available on the book’s Companion Website located at
http://www.aw.com/elmasri) cover legacy database systems, based on the hierar-
chical and network database models. They have been used for more than thirty
years as a basis for many commercial database applications and transaction-
processing systems. We consider it important to expose database management stu-
dents to these legacy approaches so they can gain a better insight of how database
technology has progressed.

Guidelines for Using This Book

There are many different ways to teach a database course. The chapters in Parts 1
through 7 can be used in an introductory course on database systems in the order
that they are given or in the preferred order of individual instructors. Selected chap-
ters and sections may be left out, and the instructor can add other chapters from the
rest of the book, depending on the emphasis of the course. At the end of the open-
ing section of many of the book’s chapters, we list sections that are candidates for
being left out whenever a less-detailed discussion of the topic is desired. We suggest
covering up to Chapter 15 in an introductory database course and including
selected parts of other chapters, depending on the background of the students and
the desired coverage. For an emphasis on system implementation techniques, chap-
ters from Parts 7, 8, and 9 should replace some of the earlier chapters.

Chapters 7 and 8, which cover conceptual modeling using the ER and EER models,
are important for a good conceptual understanding of databases. However, they
may be partially covered, covered later in a course, or even left out if the emphasis is
on DBMS implementation. Chapters 17 and 18 on file organizations and indexing
may also be covered early, later, or even left out if the emphasis is on database mod-
els and languages. For students who have completed a course on file organization,
parts of these chapters can be assigned as reading material or some exercises can be
assigned as a review for these concepts.

If the emphasis of a course is on database design, then the instructor should cover
Chapters 7 and 8 early on, followed by the presentation of relational databases. A
total life-cycle database design and implementation project would cover conceptual
design (Chapters 7 and 8), relational databases (Chapters 3, 4, and 5), data model
mapping (Chapter 9), normalization (Chapter 15), and application programs
implementation with SQL (Chapter 13). Chapter 14 also should be covered if the
emphasis is on Web database programming and applications. Additional documen-
tation on the specific programming languages and RDBMS used would be required.

Preface
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The book is written so that it is possible to cover topics in various sequences. The
chapter dependency chart below shows the major dependencies among chapters. As
the diagram illustrates, it is possible to start with several different topics following
the first two introductory chapters. Although the chart may seem complex, it is
important to note that if the chapters are covered in order, the dependencies are not
lost. The chart can be consulted by instructors wishing to use an alternative order of
presentation.

For a one-semester course based on this book, selected chapters can be assigned as
reading material. The book also can be used for a two-semester course sequence.
The first course, Introduction to Database Design and Database Systems, at the soph-
omore, junior, or senior level, can cover most of Chapters 1 through 15. The second
course, Database Models and Implementation Techniques, at the senior or first-year
graduate level, can cover most of Chapters 16 through 29. The two-semester
sequence can also been designed in various other ways, depending on the prefer-
ences of the instructors.
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Supplemental Materials

Support material is available to all users of this book and additional material is
available to qualified instructors.

® PowerPoint lecture notes and figures are available at the Computer Science
support Website at http://www.aw.com/cssupport.

® A lab manual for the sixth edition is available through the Companion Web-
site (http://www.aw.com/elmasri). The lab manual contains coverage of
popular data modeling tools, a relational algebra and calculus interpreter,
and examples from the book implemented using two widely available data-
base management systems. Select end-of-chapter laboratory problems in the
book are correlated to the lab manual.

B A solutions manual is available to qualified instructors. Visit Addison-
Wesley’s instructor resource center (http://www.aw.com/irc), contact your
local Addison-Wesley sales representative, or e-mail computing@aw.com for
information about how to access the solutions.

Additional Support Material

Gradiance, an online homework and tutorial system that provides additional prac-
tice and tests comprehension of important concepts, is available to U.S. adopters of
this book. For more information, please e-mail computing@aw.com or contact your
local Pearson representative.
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chapter

Databases and
Database Users

Databases and database systems are an essential
component of life in modern society: most of us
encounter several activities every day that involve some interaction with a database.
For example, if we go to the bank to deposit or withdraw funds, if we make a hotel
or airline reservation, if we access a computerized library catalog to search for a bib-
liographic item, or if we purchase something online—such as a book, toy, or com-
puter—chances are that our activities will involve someone or some computer
program accessing a database. Even purchasing items at a supermarket often auto-
matically updates the database that holds the inventory of grocery items.

These interactions are examples of what we may call traditional database applica-
tions, in which most of the information that is stored and accessed is either textual
or numeric. In the past few years, advances in technology have led to exciting new
applications of database systems. New media technology has made it possible to
store images, audio clips, and video streams digitally. These types of files are becom-
ing an important component of multimedia databases. Geographic information
systems (GIS) can store and analyze maps, weather data, and satellite images. Data
warehouses and online analytical processing (OLAP) systems are used in many
companies to extract and analyze useful business information from very large data-
bases to support decision making. Real-time and active database technology is
used to control industrial and manufacturing processes. And database search tech-
niques are being applied to the World Wide Web to improve the search for informa-
tion that is needed by users browsing the Internet.

To understand the fundamentals of database technology, however, we must start
from the basics of traditional database applications. In Section 1.1 we start by defin-
ing a database, and then we explain other basic terms. In Section 1.2, we provide a
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simple UNIVERSITY database example to illustrate our discussion. Section 1.3
describes some of the main characteristics of database systems, and Sections 1.4 and
1.5 categorize the types of personnel whose jobs involve using and interacting with
database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion of the
various capabilities provided by database systems and discuss some typical database
applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems can study Sections
1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and go on to
Chapter 2.

1.1 Introduction

Databases and database technology have a major impact on the growing use of
computers. It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, electronic commerce, engineering, medi-
cine, genetics, law, education, and library science. The word database is so com-
monly used that we must begin by defining what a database is. Our initial definition
is quite general.

A database is a collection of related data.! By data, we mean known facts that can be
recorded and that have implicit meaning. For example, consider the names, tele-
phone numbers, and addresses of the people you know. You may have recorded this
data in an indexed address book or you may have stored it on a hard drive, using a
personal computer and software such as Microsoft Access or Excel. This collection
of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of text to be related data and hence to
constitute a database. However, the common use of the term database is usually
more restricted. A database has the following implicit properties:

B A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD). Changes to the miniworld
are reflected in the database.

B A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

® A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in
which these users are interested.

In other words, a database has some source from which data is derived, some degree
of interaction with events in the real world, and an audience that is actively inter-

TWe will use the word data as both singular and plural, as is common in database literature; the context
will determine whether it is singular or plural. In standard English, data is used for plural and datum for
singular.
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ested in its contents. The end users of a database may perform business transactions
(for example, a customer buys a camera) or events may happen (for example, an
employee has a baby) that cause the information in the database to change. In order
for a database to be accurate and reliable at all times, it must be a true reflection of
the miniworld that it represents; therefore, changes must be reflected in the database
as soon as possible.

A database can be of any size and complexity. For example, the list of names and
addresses referred to earlier may consist of only a few hundred records, each with a
simple structure. On the other hand, the computerized catalog of a large library
may contain half a million entries organized under different categories—by pri-
mary author’s last name, by subject, by book title—with each category organized
alphabetically. A database of even greater size and complexity is maintained by the
Internal Revenue Service (IRS) to monitor tax forms filed by U.S. taxpayers. If we
assume that there are 100 million taxpayers and each taxpayer files an average of five
forms with approximately 400 characters of information per form, we would have a
database of 100 x 10° x 400 X 5 characters (bytes) of information. If the IRS keeps
the past three returns of each taxpayer in addition to the current return, we would
have a database of 8 x 10!! bytes (800 gigabytes). This huge amount of information
must be organized and managed so that users can search for, retrieve, and update
the data as needed.

An example of a large commercial database is Amazon.com. It contains data for
over 20 million books, CDs, videos, DVDs, games, electronics, apparel, and other
items. The database occupies over 2 terabytes (a terabyte is 10! bytes worth of stor-
age) and is stored on 200 different computers (called servers). About 15 million vis-
itors access Amazon.com each day and use the database to make purchases. The
database is continually updated as new books and other items are added to the
inventory and stock quantities are updated as purchases are transacted. About 100
people are responsible for keeping the Amazon database up-to-date.

A database may be generated and maintained manually or it may be computerized.
For example, a library card catalog is a database that may be created and maintained
manually. A computerized database may be created and maintained either by a
group of application programs written specifically for that task or by a database

management system. We are only concerned with computerized databases in this
book.

A database management system (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is a general-purpose software sys-
tem that facilitates the processes of defining, constructing, manipulating, and sharing
databases among various users and applications. Defining a database involves spec-
ifying the data types, structures, and constraints of the data to be stored in the data-
base. The database definition or descriptive information is also stored by the DBMS
in the form of a database catalog or dictionary; it is called meta-data. Constructing
the database is the process of storing the data on some storage medium that is con-
trolled by the DBMS. Manipulating a database includes functions such as querying
the database to retrieve specific data, updating the database to reflect changes in the

Introduction
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miniworld, and generating reports from the data. Sharing a database allows multi-
ple users and programs to access the database simultaneously.

An application program accesses the database by sending queries or requests for
data to the DBMS. A query? typically causes some data to be retrieved; a
transaction may cause some data to be read and some data to be written into the
database.

Other important functions provided by the DBMS include protecting the database
and maintaining it over a long period of time. Protection includes system protection
against hardware or software malfunction (or crashes) and security protection
against unauthorized or malicious access. A typical large database may have a life
cycle of many years, so the DBMS must be able to maintain the database system by
allowing the system to evolve as requirements change over time.

It is not absolutely necessary to use general-purpose DBMS software to implement
a computerized database. We could write our own set of programs to create and
maintain the database, in effect creating our own special-purpose DBMS software. In
either case—whether we use a general-purpose DBMS or not—we usually have to
deploy a considerable amount of complex software. In fact, most DBMSs are very
complex software systems.

To complete our initial definitions, we will call the database and DBMS software
together a database system. Figure 1.1 illustrates some of the concepts we have dis-
cussed so far.

1.2 An Example

Let us consider a simple example that most readers may be familiar with: a
UNIVERSITY database for maintaining information concerning students, courses,
and grades in a university environment. Figure 1.2 shows the database structure and
a few sample data for such a database. The database is organized as five files, each of
which stores data records of the same type.> The STUDENT file stores data on each
student, the COURSE file stores data on each course, the SECTION file stores data
on each section of a course, the GRADE_REPORT file stores the grades that students
receive in the various sections they have completed, and the PREREQUISITE file
stores the prerequisites of each course.

To define this database, we must specify the structure of the records of each file by
specifying the different types of data elements to be stored in each record. In Figure
1.2, each STUDENT record includes data to represent the student’s Name,
Student_number, Class (such as freshman or ‘1, sophomore or 2 and so forth), and

2The term query, originally meaning a question or an inquiry, is loosely used for all types of interactions
with databases, including modifying the data.

SWe use the term file informally here. At a conceptual level, a file is a collection of records that may or
may not be ordered.
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Users/Programmers
Database
System Y
Application Programs/Queries
DBMS \
Software Software to Process

Queries/Programs

Y

Software to Access
Stored Data

Stored Database
Definition Stored Database
(Meta-Data)

Figure 1.1
A simplified database
system environment.
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Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each
COURSE record includes data to represent the Course_name, Course_number,
Credit_hours, and Department (the department that offers the course); and so on. We
must also specify a data type for each data element within a record. For example, we
can specify that Name of STUDENT is a string of alphabetic characters,
Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a single
character from the set {‘A} ‘B’ ‘C}, ‘D’, ‘F, T'}. We may also use a coding scheme to rep-
resent the values of a data item. For example, in Figure 1.2 we represent the Class of
a STUDENT as 1 for freshman, 2 for sophomore, 3 for junior, 4 for senior, and 5 for
graduate student.

To construct the UNIVERSITY database, we store data to represent each student,
course, section, grade report, and prerequisite as a record in the appropriate file.
Notice that records in the various files may be related. For example, the record for
Smith in the STUDENT file is related to two records in the GRADE_REPORT file that
specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE
file relates two course records: one representing the course and the other represent-
ing the prerequisite. Most medium-size and large databases include many types of
records and have many relationships among the records.



8 Chapter 1 Databases and Database Users

Figure 1.2

A database that stores
student and course
information.

STUDENT
Name Student_number Class Major
Smith 17 1 CS
Brown 8 2 CS
COURSE
Course_name Course_number | Credit_hours | Department
Intro to Computer Science CS1310 4 CS
Data Structures CS3320 4 CS
Discrete Mathematics MATH2410 3 MATH
Database CS3380 3 CS
SECTION
Section_identifier | Course_number | Semester Year Instructor
85 MATH2410 Fall 07 King
92 CS1310 Fall 07 Anderson
102 CS3320 Spring 08 Knuth
112 MATH2410 Fall 08 Chang
119 CS1310 Fall 08 Anderson
135 CS3380 Fall 08 Stone
GRADE_REPORT
Student_number Section_identifier Grade
17 112 B
17 119 C
8 85 A
8 92 A
8 102 B
8 135 A

PREREQUISITE

Course_number Prerequisite_number
CS3380 CS3320
CS3380 MATH2410
CS3320 CS1310




1.8 Characteristics of the Database Approach

Database manipulation involves querying and updating. Examples of queries are as
follows:

B Retrieve the transcript—a list of all courses and grades—of ‘Smith’

®m List the names of students who took the section of the ‘Database’ course
offered in fall 2008 and their grades in that section

® List the prerequisites of the ‘Database’ course
Examples of updates include the following:

B Change the class of ‘Smith’ to sophomore
®m Create a new section for the ‘Database’ course for this semester

® Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

These informal queries and updates must be specified precisely in the query lan-
guage of the DBMS before they can be processed.

At this stage, it is useful to describe the database as a part of a larger undertaking
known as an information system within any organization. The Information
Technology (IT) department within a company designs and maintains an informa-
tion system consisting of various computers, storage systems, application software,
and databases. Design of a new application for an existing database or design of a
brand new database starts off with a phase called requirements specification and
analysis. These requirements are documented in detail and transformed into a
conceptual design that can be represented and manipulated using some computer-
ized tools so that it can be easily maintained, modified, and transformed into a data-
base implementation. (We will introduce a model called the Entity-Relationship
model in Chapter 7 that is used for this purpose.) The design is then translated to a
logical design that can be expressed in a data model implemented in a commercial
DBMS. (In this book we will emphasize a data model known as the Relational Data
Model from Chapter 3 onward. This is currently the most popular approach for
designing and implementing databases using relational DBMSs.) The final stage is
physical design, during which further specifications are provided for storing and
accessing the database. The database design is implemented, populated with actual
data, and continuously maintained to reflect the state of the miniworld.

1.3 Characteristics of the Database Approach

A number of characteristics distinguish the database approach from the much older
approach of programming with files. In traditional file processing, each user
defines and implements the files needed for a specific software application as part of
programming the application. For example, one user, the grade reporting office, may
keep files on students and their grades. Programs to print a student’s transcript and
to enter new grades are implemented as part of the application. A second user, the
accounting office, may keep track of students’ fees and their payments. Although
both users are interested in data about students, each user maintains separate files—
and programs to manipulate these files—because each requires some data not avail-
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able from the other user’s files. This redundancy in defining and storing data results
in wasted storage space and in redundant efforts to maintain common up-to-date
data.

In the database approach, a single repository maintains data that is defined once
and then accessed by various users. In file systems, each application is free to name
data elements independently. In contrast, in a database, the names or labels of data
are defined once, and used repeatedly by queries, transactions, and applications.
The main characteristics of the database approach versus the file-processing
approach are the following:

Self-describing nature of a database system
Insulation between programs and data, and data abstraction

Support of multiple views of the data

Sharing of data and multiuser transaction processing

We describe each of these characteristics in a separate section. We will discuss addi-
tional characteristics of database systems in Sections 1.6 through 1.8.

1.3.1 Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS cata-
log, which contains information such as the structure of each file, the type and stor-
age format of each data item, and various constraints on the data. The information
stored in the catalog is called meta-data, and it describes the structure of the pri-
mary database (Figure 1.1).

The catalog is used by the DBMS software and also by database users who need
information about the database structure. A general-purpose DBMS software pack-
age is not written for a specific database application. Therefore, it must refer to the
catalog to know the structure of the files in a specific database, such as the type and
format of data it will access. The DBMS software must work equally well with any
number of database applications—for example, a university database, a banking
database, or a company database—as long as the database definition is stored in the
catalog.

In traditional file processing, data definition is typically part of the application pro-
grams themselves. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. For
example, an application program written in C++ may have struct or class declara-
tions, and a COBOL program has data division statements to define its files.
Whereas file-processing software can access only specific databases, DBMS software
can access diverse databases by extracting the database definitions from the catalog
and using these definitions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of
all the files shown. Figure 1.3 shows some sample entries in a database catalog.
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These definitions are specified by the database designer prior to creating the actual
database and are stored in the catalog. Whenever a request is made to access, say, the
Name of a STUDENT record, the DBMS software refers to the catalog to determine
the structure of the STUDENT file and the position and size of the Name data item
within a STUDENT record. By contrast, in a typical file-processing application, the
file structure and, in the extreme case, the exact location of Name within a STUDENT
record are already coded within each program that accesses this data item.

1.3.2 Insulation between Programs and Data,
and Data Abstraction

In traditional file processing, the structure of data files is embedded in the applica-
tion programs, so any changes to the structure of a file may require changing all pro-
grams that access that file. By contrast, DBMS access programs do not require such
changes in most cases. The structure of data files is stored in the DBMS catalog sepa-
rately from the access programs. We call this property program-data independence.

RELATIONS Figure 1.3
Relation_name No_of_columns An example of a database
STUDENT 4 catalog for the database
in Figure 1.2.

COURSE 4

SECTION 5

GRADE_REPORT 3

PREREQUISITE 2

COLUMNS

Column_name Data_type Belongs_to_relation
Name Character (30) STUDENT
Student_number Character (4) STUDENT
Class Integer (1) STUDENT
Major Major_type STUDENT
Course_name Character (10) COURSE
Course_number XXXXNNNN COURSE
Prerequisite_number XXXXNNNN PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors.
XXXXNNNN is used to define a type with four alpha characters followed by four digits.
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For example, a file access program may be written in such a way that it can access
only STUDENT records of the structure shown in Figure 1.4. If we want to add
another piece of data to each STUDENT record, say the Birth_date, such a program
will no longer work and must be changed. By contrast, in a DBMS environment, we
only need to change the description of STUDENT records in the catalog (Figure 1.3)
to reflect the inclusion of the new data item Birth_date; no programs are changed.
The next time a DBMS program refers to the catalog, the new structure of STUDENT
records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational
systems (see Chapter 11), users can define operations on data as part of the database
definitions. An operation (also called a function or method) is specified in two parts.
The interface (or signature) of an operation includes the operation name and the
data types of its arguments (or parameters). The implementation (or method) of the
operation is specified separately and can be changed without affecting the interface.
User application programs can operate on the data by invoking these operations
through their names and arguments, regardless of how the operations are imple-
mented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation. The data
model uses logical concepts, such as objects, their properties, and their interrela-
tionships, that may be easier for most users to understand than computer storage
concepts. Hence, the data model hides storage and implementation details that are
not of interest to most database users.

For example, reconsider Figures 1.2 and 1.3. The internal implementation of a file
may be defined by its record length—the number of characters (bytes) in each
record—and each data item may be specified by its starting byte within a record and
its length in bytes. The STUDENT record would thus be represented as shown in
Figure 1.4. But a typical database user is not concerned with the location of each
data item within a record or its length; rather, the user is concerned that when a ref-
erence is made to Name of STUDENT, the correct value is returned. A conceptual rep-
resentation of the STUDENT records is shown in Figure 1.2. Many other details of file
storage organization—such as the access paths specified on a file—can be hidden
from database users by the DBMS; we discuss storage details in Chapters 17 and 18.

Data Item Name Starting Position in Record Length in Characters (bytes) Figure 1.4

Name ] 30 Internal storage format
for a STUDENT

Student_number 31 4 record, based on the

Class 35 1 database catalog in

Major 36 4 Figure 1.3.
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In the database approach, the detailed structure and organization of each file are
stored in the catalog. Database users and application programs refer to the concep-
tual representation of the files, and the DBMS extracts the details of file storage
from the catalog when these are needed by the DBMS file access modules. Many
data models can be used to provide this data abstraction to database users. A major
part of this book is devoted to presenting various data models and the concepts they
use to abstract the representation of data.

In object-oriented and object-relational databases, the abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users.
For example, an operation CALCULATE_GPA can be applied to a STUDENT object to
calculate the grade point average. Such operations can be invoked by the user
queries or application programs without having to know the details of how the
operations are implemented. In that sense, an abstraction of the miniworld activity
is made available to the user as an abstract operation.

1.3.3 Support of Multiple Views of the Data

A database typically has many users, each of whom may require a different perspec-
tive or view of the database. A view may be a subset of the database or it may con-
tain virtual data that is derived from the database files but is not explicitly stored.
Some users may not need to be aware of whether the data they refer to is stored or
derived. A multiuser DBMS whose users have a variety of distinct applications must
provide facilities for defining multiple views. For example, one user of the database
of Figure 1.2 may be interested only in accessing and printing the transcript of each
student; the view for this user is shown in Figure 1.5(a). A second user, who is inter-
ested only in checking that students have taken all the prerequisites of each course
for which they register, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the data-
base at the same time. This is essential if data for multiple applications is to be inte-
grated and maintained in a single database. The DBMS must include concurrency
control software to ensure that several users trying to update the same data do so in
a controlled manner so that the result of the updates is correct. For example, when
several reservation agents try to assign a seat on an airline flight, the DBMS should
ensure that each seat can be accessed by only one agent at a time for assignment to a
passenger. These types of applications are generally called online transaction pro-
cessing (OLTP) applications. A fundamental role of multiuser DBMS software is to
ensure that concurrent transactions operate correctly and efficiently.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. Each transaction is sup-
posed to execute a logically correct database access if executed in its entirety without
interference from other transactions. The DBMS must enforce several transaction
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TRANSCRIPT
Student_transcript
Student_name —
Course_number Grade Semester Year Section_id
, CS1310 C Fall 08 119
Smith
MATH2410 B Fall 08 112
MATH2410 A Fall 07 85
CS1310 A Fall 07 92
Brown -

CS3320 B Spring 08 102

() CS3380 A Fall 08 135

COURSE_PREREQUISITES
Course_name Course_number Prerequisites
CS3320
Database CS3380
MATH2410
(b) Data Structures CS3320 CS1310
Figure 1.5

Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view.
(b) The COURSE_PREREQUISITES view.

properties. The isolation property ensures that each transaction appears to execute
in isolation from other transactions, even though hundreds of transactions may be
executing concurrently. The atomicity property ensures that either all the database
operations in a transaction are executed or none are. We discuss transactions in
detail in Part 9.

The preceding characteristics are important in distinguishing a DBMS from tradi-
tional file-processing software. In Section 1.6 we discuss additional features that
characterize a DBMS. First, however, we categorize the different types of people who
work in a database system environment.

1.4 Actors on the Scene

For a small personal database, such as the list of addresses discussed in Section 1.1,
one person typically defines, constructs, and manipulates the database, and there is
no sharing. However, in large organizations, many people are involved in the design,
use, and maintenance of a large database with hundreds of users. In this section we
identify the people whose jobs involve the day-to-day use of a large database; we call
them the actors on the scene. In Section 1.5 we consider people who may be called
workers behind the scene—those who work to maintain the database system envi-
ronment but who are not actively interested in the database contents as part of their
daily job.



1.4 Actors on the Scene

1.4.1 Database Administrators

In any organization where many people use the same resources, there is a need for a
chief administrator to oversee and manage these resources. In a database environ-
ment, the primary resource is the database itself, and the secondary resource is the
DBMS and related software. Administering these resources is the responsibility of
the database administrator (DBA). The DBA is responsible for authorizing access
to the database, coordinating and monitoring its use, and acquiring software and
hardware resources as needed. The DBA is accountable for problems such as secu-
rity breaches and poor system response time. In large organizations, the DBA is
assisted by a staff that carries out these functions.

1.4.2 Database Designers

Database designers are responsible for identifying the data to be stored in the data-
base and for choosing appropriate structures to represent and store this data. These
tasks are mostly undertaken before the database is actually implemented and popu-
lated with data. It is the responsibility of database designers to communicate with
all prospective database users in order to understand their requirements and to cre-
ate a design that meets these requirements. In many cases, the designers are on the
staff of the DBA and may be assigned other staff responsibilities after the database
design is completed. Database designers typically interact with each potential group
of users and develop views of the database that meet the data and processing
requirements of these groups. Each view is then analyzed and integrated with the
views of other user groups. The final database design must be capable of supporting
the requirements of all user groups.

1.4.3 End Users

End users are the people whose jobs require access to the database for querying,
updating, and generating reports; the database primarily exists for their use. There
are several categories of end users:

B Casual end users occasionally access the database, but they may need differ-
ent information each time. They use a sophisticated database query language
to specify their requests and are typically middle- or high-level managers or
other occasional browsers.

® Naive or parametric end users make up a sizable portion of database end
users. Their main job function revolves around constantly querying and
updating the database, using standard types of queries and updates—called
canned transactions—that have been carefully programmed and tested. The
tasks that such users perform are varied:

O Bank tellers check account balances and post withdrawals and deposits.

O Reservation agents for airlines, hotels, and car rental companies check
availability for a given request and make reservations.
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O Employees at receiving stations for shipping companies enter package
identifications via bar codes and descriptive information through buttons
to update a central database of received and in-transit packages.

® Sophisticated end users include engineers, scientists, business analysts, and
others who thoroughly familiarize themselves with the facilities of the
DBMS in order to implement their own applications to meet their complex
requirements.

® Standalone users maintain personal databases by using ready-made pro-
gram packages that provide easy-to-use menu-based or graphics-based
interfaces. An example is the user of a tax package that stores a variety of per-
sonal financial data for tax purposes.

A typical DBMS provides multiple facilities to access a database. Naive end users
need to learn very little about the facilities provided by the DBMS; they simply have
to understand the user interfaces of the standard transactions designed and imple-
mented for their use. Casual users learn only a few facilities that they may use
repeatedly. Sophisticated users try to learn most of the DBMS facilities in order to
achieve their complex requirements. Standalone users typically become very profi-
cient in using a specific software package.

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive and
parametric end users, and develop specifications for standard canned transactions
that meet these requirements. Application programmers implement these specifi-
cations as programs; then they test, debug, document, and maintain these canned
transactions. Such analysts and programmers—commonly referred to as software
developers or software engineers—should be familiar with the full range of
capabilities provided by the DBMS to accomplish their tasks.

1.5 Workers behind the Scene

In addition to those who design, use, and administer a database, others are associ-
ated with the design, development, and operation of the DBMS software and system
environment. These persons are typically not interested in the database content
itself. We call them the workers behind the scene, and they include the following cat-
egories:

® DBMS system designers and implementers design and implement the
DBMS modules and interfaces as a software package. A DBMS is a very com-
plex software system that consists of many components, or modules, includ-
ing modules for implementing the catalog, query language processing,
interface processing, accessing and buffering data, controlling concurrency,
and handling data recovery and security. The DBMS must interface with
other system software such as the operating system and compilers for vari-
ous programming languages.
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® Tool developers design and implement tools—the software packages that
facilitate database modeling and design, database system design, and
improved performance. Tools are optional packages that are often purchased
separately. They include packages for database design, performance moni-
toring, natural language or graphical interfaces, prototyping, simulation,
and test data generation. In many cases, independent software vendors
develop and market these tools.

B QOperators and maintenance personnel (system administration personnel)
are responsible for the actual running and maintenance of the hardware and
software environment for the database system.

Although these categories of workers behind the scene are instrumental in making
the database system available to end users, they typically do not use the database
contents for their own purposes.

1.6 Advantages of Using the DBMS Approach

In this section we discuss some of the advantages of using a DBMS and the capabil-
ities that a good DBMS should possess. These capabilities are in addition to the four
main characteristics discussed in Section 1.3. The DBA must utilize these capabili-
ties to accomplish a variety of objectives related to the design, administration, and
use of a large multiuser database.

1.6.1 Controlling Redundancy

In traditional software development utilizing file processing, every user group
maintains its own files for handling its data-processing applications. For example,
consider the UNIVERSITY database example of Section 1.2; here, two groups of users
might be the course registration personnel and the accounting office. In the tradi-
tional approach, each group independently keeps files on students. The accounting
office keeps data on registration and related billing information, whereas the regis-
tration office keeps track of student courses and grades. Other groups may further
duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems.
First, there is the need to perform a single logical update—such as entering data on
a new student—multiple times: once for each file where student data is recorded.
This leads to duplication of effort. Second, storage space is wasted when the same data
is stored repeatedly, and this problem may be serious for large databases. Third, files
that represent the same data may become inconsistent. This may happen because an
update is applied to some of the files but not to others. Even if an update—such as
adding a new student—is applied to all the appropriate files, the data concerning
the student may still be inconsistent because the updates are applied independently
by each user group. For example, one user group may enter a student’s birth date
erroneously as JAN-19-1988’, whereas the other user groups may enter the correct
value of JAN-29-1988".
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In the database approach, the views of different user groups are integrated during
database design. Ideally, we should have a database design that stores each logical
data item—such as a student’s name or birth date—in only one place in the database.
This is known as data normalization, and it ensures consistency and saves storage
space (data normalization is described in Part 6 of the book). However, in practice, it
is sometimes necessary to use controlled redundancy to improve the performance
of queries. For example, we may store Student_name and Course_number redundantly
in a GRADE_REPORT file (Figure 1.6(a)) because whenever we retrieve a
GRADE_REPORT record, we want to retrieve the student name and course number
along with the grade, student number, and section identifier. By placing all the data
together, we do not have to search multiple files to collect this data. This is known as
denormalization. In such cases, the DBMS should have the capability to control this
redundancy in order to prohibit inconsistencies among the files. This may be done by
automatically checking that the Student_name-Student_number values in any
GRADE_REPORT record in Figure 1.6(a) match one of the Name-Student_number val-
ues of a STUDENT record (Figure 1.2). Similarly, the Section_identifier—Course_number
values in GRADE_REPORT can be checked against SECTION records. Such checks can
be specified to the DBMS during database design and automatically enforced by the
DBMS whenever the GRADE_REPORT file is updated. Figure 1.6(b) shows a
GRADE_REPORT record that is inconsistent with the STUDENT file in Figure 1.2; this
kind of error may be entered if the redundancy is not controlled. Can you tell which
part is inconsistent?

1.6.2 Restricting Unauthorized Access

When multiple users share a large database, it is likely that most users will not be
authorized to access all information in the database. For example, financial data is
often considered confidential, and only authorized persons are allowed to access
such data. In addition, some users may only be permitted to retrieve data, whereas

Figure 1.6
Redundant storage
of Student_name
and Course_name in
GRADE_REPORT.
(a) Consistent data.
(b) Inconsistent
record.

(a

(b)

GRADE_REPORT
Student_number | Student_name | Section_identifier| Course_number | Grade

17 Smith 112 MATH2410 B
17 Smith 119 CS1310 C
8 Brown 85 MATH2410 A
8 Brown 92 CS1310 A
8 Brown 102 CS3320 B
8 Brown 135 CS3380 A

GRADE_REPORT
Student_number | Student_name | Section_identifier| Course_number | Grade
17 Brown 112 MATH2410 B
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others are allowed to retrieve and update. Hence, the type of access operation—
retrieval or update—must also be controlled. Typically, users or user groups are
given account numbers protected by passwords, which they can use to gain access to
the database. A DBMS should provide a security and authorization subsystem,
which the DBA uses to create accounts and to specify account restrictions. Then, the
DBMS should enforce these restrictions automatically. Notice that we can apply
similar controls to the DBMS software. For example, only the dba’s staff may be
allowed to use certain privileged software, such as the software for creating new
accounts. Similarly, parametric users may be allowed to access the database only
through the predefined canned transactions developed for their use.

1.6.3 Providing Persistent Storage for Program Objects

Databases can be used to provide persistent storage for program objects and data
structures. This is one of the main reasons for object-oriented database systems.
Programming languages typically have complex data structures, such as record
types in Pascal or class definitions in C++ or Java. The values of program variables
or objects are discarded once a program terminates, unless the programmer explic-
itly stores them in permanent files, which often involves converting these complex
structures into a format suitable for file storage. When the need arises to read
this data once more, the programmer must convert from the file format to the pro-
gram variable or object structure. Object-oriented database systems are compatible
with programming languages such as C++ and Java, and the DBMS software auto-
matically performs any necessary conversions. Hence, a complex object in C++ can
be stored permanently in an object-oriented DBMS. Such an object is said to be
persistent, since it survives the termination of program execution and can later be
directly retrieved by another C++ program.

The persistent storage of program objects and data structures is an important func-
tion of database systems. Traditional database systems often suffered from the so-
called impedance mismatch problem, since the data structures provided by the
DBMS were incompatible with the programming language’s data structures.
Object-oriented database systems typically offer data structure compatibility with
one or more object-oriented programming languages.

1.6.4 Providing Storage Structures and Search
Techniques for Efficient Query Processing

Database systems must provide capabilities for efficiently executing queries and
updates. Because the database is typically stored on disk, the DBMS must provide
specialized data structures and search techniques to speed up disk search for the
desired records. Auxiliary files called indexes are used for this purpose. Indexes are
typically based on tree data structures or hash data structures that are suitably mod-
ified for disk search. In order to process the database records needed by a particular
query, those records must be copied from disk to main memory. Therefore, the
DBMS often has a buffering or caching module that maintains parts of the data-
base in main memory buffers. In general, the operating system is responsible for
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disk-to-memory buffering. However, because data buffering is crucial to the DBMS
performance, most DBMSs do their own data buffering.

The query processing and optimization module of the DBMS is responsible for
choosing an efficient query execution plan for each query based on the existing stor-
age structures. The choice of which indexes to create and maintain is part of physical
database design and tuning, which is one of the responsibilities of the DBA staff. We
discuss the query processing, optimization, and tuning in Part 8 of the book.

1.6.5 Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software failures.
The backup and recovery subsystem of the DBMS is responsible for recovery. For
example, if the computer system fails in the middle of a complex update transac-
tion, the recovery subsystem is responsible for making sure that the database is
restored to the state it was in before the transaction started executing. Alternatively,
the recovery subsystem could ensure that the transaction is resumed from the point
at which it was interrupted so that its full effect is recorded in the database. Disk
backup is also necessary in case of a catastrophic disk failure. We discuss recovery
and backup in Chapter 23.

1.6.6 Providing Multiple User Interfaces

Because many types of users with varying levels of technical knowledge use a data-
base, a DBMS should provide a variety of user interfaces. These include query lan-
guages for casual users, programming language interfaces for application
programmers, forms and command codes for parametric users, and menu-driven
interfaces and natural language interfaces for standalone users. Both forms-style
interfaces and menu-driven interfaces are commonly known as graphical user
interfaces (GUIs). Many specialized languages and environments exist for specify-
ing GUIs. Capabilities for providing Web GUI interfaces to a database—or Web-
enabling a database—are also quite common.

1.6.7 Representing Complex Relationships among Data

A database may include numerous varieties of data that are interrelated in many
ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the
STUDENT file is related to four records in the GRADE_REPORT file. Similarly, each
section record is related to one course record and to a number of GRADE_REPORT
records—one for each student who completed that section. A DBMS must have the
capability to represent a variety of complex relationships among the data, to define
new relationships as they arise, and to retrieve and update related data easily and
efficiently.

1.6.8 Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must hold for
the data. A DBMS should provide capabilities for defining and enforcing these con-
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straints. The simplest type of integrity constraint involves specifying a data type for
each data item. For example, in Figure 1.3, we specified that the value of the Class
data item within each STUDENT record must be a one digit integer and that the
value of Name must be a string of no more than 30 alphabetic characters. To restrict
the value of Class between 1 and 5 would be an additional constraint that is not
shown in the current catalog. A more complex type of constraint that frequently
occurs involves specifying that a record in one file must be related to records in
other files. For example, in Figure 1.2, we can specify that every section record must
be related to a course record. This is known as a referential integrity constraint.
Another type of constraint specifies uniqueness on data item values, such as every
course record must have a unique value for Course_number. This is known as a key or
uniqueness constraint. These constraints are derived from the meaning or
semantics of the data and of the miniworld it represents. It is the responsibility of
the database designers to identify integrity constraints during database design.
Some constraints can be specified to the DBMS and automatically enforced. Other
constraints may have to be checked by update programs or at the time of data entry.
For typical large applications, it is customary to call such constraints business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-
straints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered
in the database, the DBMS cannot discover this error automatically because ‘C’ is a
valid value for the Grade data type. Such data entry errors can only be discovered
manually (when the student receives the grade and complains) and corrected later
by updating the database. However, a grade of ‘Z” would be rejected automatically
by the DBMS because ‘Z’ is not a valid value for the Grade data type. When we dis-
cuss each data model in subsequent chapters, we will introduce rules that pertain to
that model implicitly. For example, in the Entity-Relationship model in Chapter 7, a
relationship must involve at least two entities. Such rules are inherent rules of the
data model and are automatically assumed to guarantee the validity of the model.

1.6.9 Permitting Inferencing and Actions Using Rules

Some database systems provide capabilities for defining deduction rules for
inferencing new information from the stored database facts. Such systems are called
deductive database systems. For example, there may be complex rules in the mini-
world application for determining when a student is on probation. These can be
specified declaratively as rules, which when compiled and maintained by the DBMS
can determine all students on probation. In a traditional DBMS, an explicit
procedural program code would have to be written to support such applications. But
if the miniworld rules change, it is generally more convenient to change the declared
deduction rules than to recode procedural programs. In today’s relational database
systems, it is possible to associate triggers with tables. A trigger is a form of a rule
activated by updates to the table, which results in performing some additional oper-
ations to some other tables, sending messages, and so on. More involved procedures
to enforce rules are popularly called stored procedures; they become a part of the
overall database definition and are invoked appropriately when certain conditions
are met. More powerful functionality is provided by active database systems, which
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provide active rules that can automatically initiate actions when certain events and
conditions occur.

1.6.10 Additional Implications of Using
the Database Approach

This section discusses some additional implications of using the database approach
that can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to
define and enforce standards among database users in a large organization. This facil-
itates communication and cooperation among various departments, projects, and
users within the organization. Standards can be defined for names and formats of
data elements, display formats, report structures, terminology, and so on. The DBA
can enforce standards in a centralized database environment more easily than in an
environment where each user group has control of its own data files and software.

Reduced Application Development Time. A prime selling feature of the data-
base approach is that developing a new application—such as the retrieval of certain
data from the database for printing a new report—takes very little time. Designing
and implementing a large multiuser database from scratch may take more time than
writing a single specialized file application. However, once a database is up and run-
ning, substantially less time is generally required to create new applications using
DBMS facilities. Development time using a DBMS is estimated to be one-sixth to
one-fourth of that for a traditional file system.

Flexibility. It may be necessary to change the structure of a database as require-
ments change. For example, a new user group may emerge that needs information
not currently in the database. In response, it may be necessary to add a file to the
database or to extend the data elements in an existing file. Modern DBMSs allow
certain types of evolutionary changes to the structure of the database without
affecting the stored data and the existing application programs.

Availability of Up-to-Date Information. A DBMS makes the database available
to all users. As soon as one user’s update is applied to the database, all other users
can immediately see this update. This availability of up-to-date information is
essential for many transaction-processing applications, such as reservation systems
or banking databases, and it is made possible by the concurrency control and recov-
ery subsystems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and
applications, thus reducing the amount of wasteful overlap between activities of
data-processing personnel in different projects or departments as well as redundan-
cies among applications. This enables the whole organization to invest in more
powerful processors, storage devices, or communication gear, rather than having
each department purchase its own (lower performance) equipment. This reduces
overall costs of operation and management.
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1.7 A Brief History of Database Applications

We now give a brief historical overview of the applications that use DBMSs and how
these applications provided the impetus for new types of database systems.

1.71 Early Database Applications Using Hierarchical
and Network Systems

Many early database applications maintained records in large organizations such as
corporations, universities, hospitals, and banks. In many of these applications, there
were large numbers of records of similar structure. For example, in a university
application, similar information would be kept for each student, each course, each
grade record, and so on. There were also many types of records and many interrela-
tionships among them.

One of the main problems with early database systems was the intermixing of con-
ceptual relationships with the physical storage and placement of records on disk.
Hence, these systems did not provide sufficient data abstraction and program-data
independence capabilities. For example, the grade records of a particular student
could be physically stored next to the student record. Although this provided very
efficient access for the original queries and transactions that the database was
designed to handle, it did not provide enough flexibility to access records efficiently
when new queries and transactions were identified. In particular, new queries that
required a different storage organization for efficient processing were quite difficult
to implement efficiently. It was also laborious to reorganize the database when
changes were made to the application’s requirements.

Another shortcoming of early systems was that they provided only programming
language interfaces. This made it time-consuming and expensive to implement new
queries and transactions, since new programs had to be written, tested, and
debugged. Most of these database systems were implemented on large and expensive
mainframe computers starting in the mid-1960s and continuing through the 1970s
and 1980s. The main types of early systems were based on three main paradigms:
hierarchical systems, network model based systems, and inverted file systems.

1.7.2 Providing Data Abstraction and Application
Flexibility with Relational Databases

Relational databases were originally proposed to separate the physical storage of
data from its conceptual representation and to provide a mathematical foundation
for data representation and querying. The relational data model also introduced
high-level query languages that provided an alternative to programming language
interfaces, making it much faster to write new queries. Relational representation of
data somewhat resembles the example we presented in Figure 1.2. Relational sys-
tems were initially targeted to the same applications as earlier systems, and provided
flexibility to develop new queries quickly and to reorganize the database as require-
ments changed. Hence, data abstraction and program-data independence were much
improved when compared to earlier systems.
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Early experimental relational systems developed in the late 1970s and the commer-
cial relational database management systems (RDBMS) introduced in the early
1980s were quite slow, since they did not use physical storage pointers or record
placement to access related data records. With the development of new storage and
indexing techniques and better query processing and optimization, their perfor-
mance improved. Eventually, relational databases became the dominant type of data-
base system for traditional database applications. Relational databases now exist on
almost all types of computers, from small personal computers to large servers.

1.7.3 Object-Oriented Applications and the Need
for More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the
need to store and share complex, structured objects led to the development of
object-oriented databases (OODBs). Initially, OODBs were considered a competi-
tor to relational databases, since they provided more general data structures. They
also incorporated many of the useful object-oriented paradigms, such as abstract
data types, encapsulation of operations, inheritance, and object identity. However,
the complexity of the model and the lack of an early standard contributed to their
limited use. They are now mainly used in specialized applications, such as engineer-
ing design, multimedia publishing, and manufacturing systems. Despite expecta-
tions that they will make a big impact, their overall penetration into the database
products market remains under 5% today. In addition, many object-oriented con-
cepts were incorporated into the newer versions of relational DBMSs, leading to
object-relational database management systems, known as ORDBMSs.

1.74 Interchanging Data on the Web
for E-Commerce Using XML

The World Wide Web provides a large network of interconnected computers. Users
can create documents using a Web publishing language, such as HyperText Markup
Language (HTML), and store these documents on Web servers where other users
(clients) can access them. Documents can be linked through hyperlinks, which are
pointers to other documents. In the 1990s, electronic commerce (e-commerce)
emerged as a major application on the Web. It quickly became apparent that parts of
the information on e-commerce Web pages were often dynamically extracted data
from DBMSs. A variety of techniques were developed to allow the interchange of
data on the Web. Currently, eXtended Markup Language (XML) is considered to be
the primary standard for interchanging data among various types of databases and
Web pages. XML combines concepts from the models used in document systems
with database modeling concepts. Chapter 12 is devoted to the discussion of XML.

1.7.5 Extending Database Capabilities for New Applications

The success of database systems in traditional applications encouraged developers
of other types of applications to attempt to use them. Such applications tradition-
ally used their own specialized file and data structures. Database systems now offer
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extensions to better support the specialized requirements for some of these applica-
tions. The following are some examples of these applications:

® Scientific applications that store large amounts of data resulting from scien-
tific experiments in areas such as high-energy physics, the mapping of the
human genome, and the discovery of protein structures.

® Storage and retrieval of images, including scanned news or personal photo-
graphs, satellite photographic images, and images from medical procedures
such as x-rays and MRIs (magnetic resonance imaging).

® Storage and retrieval of videos, such as movies, and video clips from news
or personal digital cameras.

® Data mining applications that analyze large amounts of data searching for
the occurrences of specific patterns or relationships, and for identifying
unusual patterns in areas such as credit card usage.

B Spatial applications that store spatial locations of data, such as weather
information, maps used in geographical information systems, and in auto-
mobile navigational systems.

B Time series applications that store information such as economic data at
regular points in time, such as daily sales and monthly gross national prod-
uct figures.

It was quickly apparent that basic relational systems were not very suitable for many
of these applications, usually for one or more of the following reasons:

B More complex data structures were needed for modeling the application
than the simple relational representation.

B New data types were needed in addition to the basic numeric and character
string types.

® New operations and query language constructs were necessary to manipu-
late the new data types.

B New storage and indexing structures were needed for efficient searching on
the new data types.

This led DBMS developers to add functionality to their systems. Some functionality
was general purpose, such as incorporating concepts from object-oriented data-
bases into relational systems. Other functionality was special purpose, in the form
of optional modules that could be used for specific applications. For example, users
could buy a time series module to use with their relational DBMS for their time
series application.

Many large organizations use a variety of software application packages that work
closely with database back-ends. The database back-end represents one or more
databases, possibly from different vendors and using different data models, that
maintain data that is manipulated by these packages for supporting transactions,
generating reports, and answering ad-hoc queries. One of the most commonly used
systems includes Enterprise Resource Planning (ERP), which is used to consolidate
a variety of functional areas within an organization, including production, sales,
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distribution, marketing, finance, human resources, and so on. Another popular type
of system is Customer Relationship Management (CRM) software that spans order
processing as well as marketing and customer support functions. These applications
are Web-enabled in that internal and external users are given a variety of Web-
portal interfaces to interact with the back-end databases.

1.7.6 Databases versus Information Retrieval

Traditionally, database technology applies to structured and formatted data that
arises in routine applications in government, business, and industry. Database tech-
nology is heavily used in manufacturing, retail, banking, insurance, finance, and
health care industries, where structured data is collected through forms, such as
invoices or patient registration documents. An area related to database technology is
Information Retrieval (IR), which deals with books, manuscripts, and various
forms of library-based articles. Data is indexed, cataloged, and annotated using key-
words. IR is concerned with searching for material based on these keywords, and
with the many problems dealing with document processing and free-form text pro-
cessing. There has been a considerable amount of work done on searching for text
based on keywords, finding documents and ranking them based on relevance, auto-
matic text categorization, classification of text documents by topics, and so on. With
the advent of the Web and the proliferation of HTML pages running into the bil-
lions, there is a need to apply many of the IR techniques to processing data on the
Web. Data on Web pages typically contains images, text, and objects that are active
and change dynamically. Retrieval of information on the Web is a new problem that
requires techniques from databases and IR to be applied in a variety of novel com-
binations. We discuss concepts related to information retrieval and Web search in
Chapter 27.

1.8 When Not to Use a DBMS

In spite of the advantages of using a DBMS, there are a few situations in which a
DBMS may involve unnecessary overhead costs that would not be incurred in tradi-
tional file processing. The overhead costs of using a DBMS are due to the following:
® High initial investment in hardware, software, and training
B The generality that a DBMS provides for defining and processing data
B Overhead for providing security, concurrency control, recovery, and
integrity functions

Therefore, it may be more desirable to use regular files under the following circum-
stances:

® Simple, well-defined database applications that are not expected to change at
all

® Stringent, real-time requirements for some application programs that may
not be met because of DBMS overhead
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® Embedded systems with limited storage capacity, where a general-purpose
DBMS would not fit

® No multiple-user access to data

Certain industries and applications have elected not to use general-purpose
DBMSs. For example, many computer-aided design (CAD) tools used by mechani-
cal and civil engineers have proprietary file and data management software that is
geared for the internal manipulations of drawings and 3D objects. Similarly, com-
munication and switching systems designed by companies like AT&T were early
manifestations of database software that was made to run very fast with hierarchi-
cally organized data for quick access and routing of calls. Similarly, GIS implemen-
tations often implement their own data organization schemes for efficiently
implementing functions related to processing maps, physical contours, lines, poly-
gons, and so on. General-purpose DBMSs are inadequate for their purpose.

1.9 Summary

In this chapter we defined a database as a collection of related data, where data
means recorded facts. A typical database represents some aspect of the real world
and is used for specific purposes by one or more groups of users. A DBMS is a gen-
eralized software package for implementing and maintaining a computerized data-
base. The database and software together form a database system. We identified
several characteristics that distinguish the database approach from traditional file-
processing applications, and we discussed the main categories of database users, or
the actors on the scene. We noted that in addition to database users, there are several
categories of support personnel, or workers behind the scene, in a database environ-
ment.

We presented a list of capabilities that should be provided by the DBMS software to
the DBA, database designers, and end users to help them design, administer, and use
a database. Then we gave a brief historical perspective on the evolution of database
applications. We pointed out the marriage of database technology with information
retrieval technology, which will play an important role due to the popularity of the
Web. Finally, we discussed the overhead costs of using a DBMS and discussed some
situations in which it may not be advantageous to use one.

Review Questions

1.1. Define the following terms: data, database, DBMS, database system, database
catalog, program-data independence, user view, DBA, end user, canned trans-
action, deductive database system, persistent object, meta-data, and
transaction-processing application.

1.2. What four main types of actions involve databases? Briefly discuss each.

1.3. Discuss the main characteristics of the database approach and how it differs
from traditional file systems.
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1.4.
1.5.

1.6.
1.7.

What are the responsibilities of the DBA and the database designers?

What are the different types of database end users? Discuss the main activi-
ties of each.

Discuss the capabilities that should be provided by a DBMS.

Discuss the differences between database systems and information retrieval
systems.

Exercises

1.8.

1.9.

Identify some informal queries and update operations that you would expect
to apply to the database shown in Figure 1.2.

What is the difference between controlled and uncontrolled redundancy?
[lustrate with examples.

. Specify all the relationships among the records of the database shown in

Figure 1.2.

. Give some additional views that may be needed by other user groups for the

database shown in Figure 1.2.

. Cite some examples of integrity constraints that you think can apply to the

database shown in Figure 1.2.

. Give examples of systems in which it may make sense to use traditional file

processing instead of a database approach.

. Consider Figure 1.2.

a. If the name of the ‘CS’ (Computer Science) Department changes to
‘CSSE’ (Computer Science and Software Engineering) Department and
the corresponding prefix for the course number also changes, identify the
columns in the database that would need to be updated.

b. Can you restructure the columns in the COURSE, SECTION, and
PREREQUISITE tables so that only one column will need to be updated?

Selected Bibliography

The October 1991 issue of Communications of the ACM and Kim (1995) include
several articles describing next-generation DBMSs; many of the database features
discussed in the former are now commercially available. The March 1976 issue of
ACM Computing Surveys offers an early introduction to database systems and may
provide a historical perspective for the interested reader.
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Database System Concepts
and Architecture

The architecture of DBMS packages has evolved from
the early monolithic systems, where the whole
DBMS software package was one tightly integrated system, to the modern DBMS
packages that are modular in design, with a client/server system architecture. This
evolution mirrors the trends in computing, where large centralized mainframe com-
puters are being replaced by hundreds of distributed workstations and personal
computers connected via communications networks to various types of server
machines—Web servers, database servers, file servers, application servers, and so on.

In a basic client/server DBMS architecture, the system functionality is distributed
between two types of modules.! A client module is typically designed so that it will
run on a user workstation or personal computer. Typically, application programs
and user interfaces that access the database run in the client module. Hence, the
client module handles user interaction and provides the user-friendly interfaces
such as forms- or menu-based GUIs (graphical user interfaces). The other kind of
module, called a server module, typically handles data storage, access, search, and
other functions. We discuss client/server architectures in more detail in Section 2.5.
First, we must study more basic concepts that will give us a better understanding of
modern database architectures.

In this chapter we present the terminology and basic concepts that will be used
throughout the book. Section 2.1 discusses data models and defines the concepts of
schemas and instances, which are fundamental to the study of database systems.
Then, we discuss the three-schema DBMS architecture and data independence in
Section 2.2; this provides a user’s perspective on what a DBMS is supposed to do. In
Section 2.3 we describe the types of interfaces and languages that are typically pro-
vided by a DBMS. Section 2.4 discusses the database system software environment.

1As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.
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Section 2.5 gives an overview of various types of client/server architectures. Finally,
Section 2.6 presents a classification of the types of DBMS packages. Section 2.7
summarizes the chapter.

The material in Sections 2.4 through 2.6 provides more detailed concepts that may
be considered as supplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some
level of data abstraction. Data abstraction generally refers to the suppression of
details of data organization and storage, and the highlighting of the essential fea-
tures for an improved understanding of data. One of the main characteristics of the
database approach is to support data abstraction so that different users can perceive
data at their preferred level of detail. A data model—a collection of concepts that
can be used to describe the structure of a database—provides the necessary means
to achieve this abstraction.? By structure of a database we mean the data types, rela-
tionships, and constraints that apply to the data. Most data models also include a set
of basic operations for specifying retrievals and updates on the database.

In addition to the basic operations provided by the data model, it is becoming more
common to include concepts in the data model to specify the dynamic aspect or
behavior of a database application. This allows the database designer to specify a set
of valid user-defined operations that are allowed on the database objects.> An exam-
ple of a user-defined operation could be COMPUTE_GPA, which can be applied to a
STUDENT object. On the other hand, generic operations to insert, delete, modify, or
retrieve any kind of object are often included in the basic data model operations.
Concepts to specify behavior are fundamental to object-oriented data models (see
Chapter 11) but are also being incorporated in more traditional data models. For
example, object-relational models (see Chapter 11) extend the basic relational
model to include such concepts, among others. In the basic relational data model,
there is a provision to attach behavior to the relations in the form of persistent
stored modules, popularly known as stored procedures (see Chapter 13).

2.1.1 Categories of Data Models

Many data models have been proposed, which we can categorize according to the
types of concepts they use to describe the database structure. High-level or
conceptual data models provide concepts that are close to the way many users per-
ceive data, whereas low-level or physical data models provide concepts that
describe the details of how data is stored on the computer storage media, typically

2Sometimes the word modelis used to denote a specific database description, or schema—for example,
the marketing data model. We will not use this interpretation.

3The inclusion of concepts to describe behavior reflects a trend whereby database design and software
design activities are increasingly being combined into a single activity. Traditionally, specifying behavior is
associated with software design.
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magnetic disks. Concepts provided by low-level data models are generally meant for
computer specialists, not for end users. Between these two extremes is a class of
representational (or implementation) data models,* which provide concepts that
may be easily understood by end users but that are not too far removed from the
way data is organized in computer storage. Representational data models hide many
details of data storage on disk but can be implemented on a computer system
directly.

Conceptual data models use concepts such as entities, attributes, and relationships.
An entity represents a real-world object or concept, such as an employee or a project
from the miniworld that is described in the database. An attribute represents some
property of interest that further describes an entity, such as the employee’s name or
salary. A relationship among two or more entities represents an association among
the entities, for example, a works-on relationship between an employee and a proj-
ect. Chapter 7 presents the Entity-Relationship model—a popular high-level con-
ceptual data model. Chapter 8 describes additional abstractions used for advanced
modeling, such as generalization, specialization, and categories (union types).

Representational or implementation data models are the models used most fre-
quently in traditional commercial DBMSs. These include the widely used relational
data model, as well as the so-called legacy data models—the network and
hierarchical models—that have been widely used in the past. Part 2 is devoted to
the relational data model, and its constraints, operations and languages.’ The SQL
standard for relational databases is described in Chapters 4 and 5. Representational
data models represent data by using record structures and hence are sometimes
called record-based data models.

We can regard the object data model as an example of a new family of higher-level
implementation data models that are closer to conceptual data models. A standard
for object databases called the ODMG object model has been proposed by the
Object Data Management Group (ODMG). We describe the general characteristics
of object databases and the object model proposed standard in Chapter 11. Object
data models are also frequently utilized as high-level conceptual models, particu-
larly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by repre-
senting information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records effi-
cient. We discuss physical storage techniques and access structures in Chapters 17
and 18. An index is an example of an access path that allows direct access to data
using an index term or a keyword. It is similar to the index at the end of this book,
except that it may be organized in a linear, hierarchical (tree-structured), or some
other fashion.

4The term implementation data model is not a standard term; we have introduced it to refer to the avail-
able data models in commercial database systems.

5A summary of the hierarchical and network data models is included in Appendices D and E. They are
accessible from the book’s Web site.
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2.1.2 Schemas, Instances, and Database State

In any data model, it is important to distinguish between the description of the data-
base and the database itself. The description of a database is called the database
schema, which is specified during database design and is not expected to change
frequently.® Most data models have certain conventions for displaying schemas as
diagrams.” A displayed schema is called a schema diagram. Figure 2.1 shows a
schema diagram for the database shown in Figure 1.2; the diagram displays the
structure of each record type but not the actual instances of records. We call each
object in the schema—such as STUDENT or COURSE—a schema construct.

A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints. Other aspects are not
specified in the schema diagram; for example, Figure 2.1 shows neither the data type
of each data item, nor the relationships among the various files. Many types of con-
straints are not represented in schema diagrams. A constraint such as students
majoring in computer science must take CS1310 before the end of their sophomore year
is quite difficult to represent diagrammatically.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a new student or enter a new
grade. The data in the database at a particular moment in time is called a database
state or snapshot. It is also called the current set of occurrences or instances in the

Figure 2.1 STUDENT
Schema diagram for the ’ Name ‘Student_number ‘ Class ‘ Major ‘
database in Figure 1.2.

COURSE

’ Course_name ‘ Course_number ‘ Credit_hours‘ Department

PREREQUISITE
’ Course_number ‘ Prerequisite_number ‘

SECTION
’ Section_identifier‘ Course_number ‘ Semester ‘ Year ‘ Instructor

GRADE_REPORT
’ Student_number ‘ Section_identifier‘ Grade ‘

6Schema changes are usually needed as the requirements of the database applications change. Newer
database systems include operations for allowing schema changes, although the schema change
process is more involved than simple database updates.

“It is customary in database parlance to use schemas as the plural for schema, even though schemata is
the proper plural form. The word scheme is also sometimes used to refer to a schema.
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database. In a given database state, each schema construct has its own current set of
instances; for example, the STUDENT construct will contain the set of individual
student entities (records) as its instances. Many database states can be constructed
to correspond to a particular database schema. Every time we insert or delete a
record or change the value of a data item in a record, we change one state of the
database into another state.

The distinction between database schema and database state is very important.
When we define a new database, we specify its database schema only to the DBMS.
At this point, the corresponding database state is the empty state with no data. We
get the initial state of the database when the database is first populated or loaded
with the initial data. From then on, every time an update operation is applied to the
database, we get another database state. At any point in time, the database has a
current state.® The DBMS is partly responsible for ensuring that every state of the
database is a valid state—that is, a state that satisfies the structure and constraints
specified in the schema. Hence, specifying a correct schema to the DBMS is
extremely important and the schema must be designed with utmost care. The
DBMS stores the descriptions of the schema constructs and constraints—also called
the meta-data—in the DBMS catalog so that DBMS software can refer to the
schema whenever it needs to. The schema is sometimes called the intension, and a
database state is called an extension of the schema.

Although, as mentioned earlier, the schema is not supposed to change frequently, it
is not uncommon that changes occasionally need to be applied to the schema as the
application requirements change. For example, we may decide that another data
item needs to be stored for each record in a file, such as adding the Date_of_birth to
the STUDENT schema in Figure 2.1. This is known as schema evolution. Most mod-
ern DBMSs include some operations for schema evolution that can be applied while
the database is operational.

2.2 Three-Schema Architecture
and Data Independence

Three of the four important characteristics of the database approach, listed in
Section 1.3, are (1) use of a catalog to store the database description (schema) so as
to make it self-describing, (2) insulation of programs and data (program-data and
program-operation independence), and (3) support of multiple user views. In this
section we specify an architecture for database systems, called the three-schema
architecture,’ that was proposed to help achieve and visualize these characteristics.
Then we discuss the concept of data independence further.

8The current state is also called the current snapshot of the database. It has also been called a database
instance, but we prefer to use the term instance to refer to individual records.

9This is also known as the ANSI/SPARC architecture, after the committee that proposed it (Tsichritzis
and Klug 1978).
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2.2.1 The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate the
user applications from the physical database. In this architecture, schemas can be
defined at the following three levels:

1. The internal level has an internal schema, which describes the physical stor-
age structure of the database. The internal schema uses a physical data model
and describes the complete details of data storage and access paths for the
database.

2. The conceptual level has a conceptual schema, which describes the struc-
ture of the whole database for a community of users. The conceptual schema
hides the details of physical storage structures and concentrates on describ-
ing entities, data types, relationships, user operations, and constraints.
Usually, a representational data model is used to describe the conceptual
schema when a database system is implemented. This implementation con-
ceptual schema is often based on a conceptual schema design in a high-level
data model.

3. The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that
user group. As in the previous level, each external schema is typically imple-
mented using a representational data model, possibly based on an external
schema design in a high-level data model.

Figure 2.2
The three-schema
architecture.

% End Users %
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View View
External/Conceptual
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The three-schema architecture is a convenient tool with which the user can visualize
the schema levels in a database system. Most DBMSs do not separate the three levels
completely and explicitly, but support the three-schema architecture to some extent.
Some older DBMSs may include physical-level details in the conceptual schema.
The three-level ANSI architecture has an important place in database technology
development because it clearly separates the users’ external level, the database’s con-
ceptual level, and the internal storage level for designing a database. It is very much
applicable in the design of DBMSs, even today. In most DBMSs that support user
views, external schemas are specified in the same data model that describes the
conceptual-level information (for example, a relational DBMS like Oracle uses SQL
for this). Some DBMSs allow different data models to be used at the conceptual and
external levels. An example is Universal Data Base (UDB), a DBMS from IBM,
which uses the relational model to describe the conceptual schema, but may use an
object-oriented model to describe an external schema.

Notice that the three schemas are only descriptions of data; the stored data that
actually exists is at the physical level only. In a DBMS based on the three-schema
architecture, each user group refers to its own external schema. Hence, the DBMS
must transform a request specified on an external schema into a request against the
conceptual schema, and then into a request on the internal schema for processing
over the stored database. If the request is a database retrieval, the data extracted
from the stored database must be reformatted to match the user’s external view. The
processes of transforming requests and results between levels are called mappings.
These mappings may be time-consuming, so some DBMSs—especially those that
are meant to support small databases—do not support external views. Even in such
systems, however, a certain amount of mapping is necessary to transform requests
between the conceptual and internal levels.

2.2.2 Data Independence

The three-schema architecture can be used to further explain the concept of data
independence, which can be defined as the capacity to change the schema at one
level of a database system without having to change the schema at the next higher
level. We can define two types of data independence:

1. Logical data independence is the capacity to change the conceptual schema
without having to change external schemas or application programs. We
may change the conceptual schema to expand the database (by adding a
record type or data item), to change constraints, or to reduce the database
(by removing a record type or data item). In the last case, external schemas
that refer only to the remaining data should not be affected. For example, the
external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one
shown in Figure 1.6(a). Only the view definition and the mappings need to
be changed in a DBMS that supports logical data independence. After the
conceptual schema undergoes a logical reorganization, application pro-
grams that reference the external schema constructs must work as before.
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Changes to constraints can be applied to the conceptual schema without
affecting the external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema
without having to change the conceptual schema. Hence, the external
schemas need not be changed as well. Changes to the internal schema may be
needed because some physical files were reorganized—for example, by creat-
ing additional access structures—to improve the performance of retrieval or
update. If the same data as before remains in the database, we should not
have to change the conceptual schema. For example, providing an access
path to improve retrieval speed of section records (Figure 1.2) by semester
and year should not require a query such as list all sections offered in fall 2008
to be changed, although the query would be executed more efficiently by the
DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environ-
ments where physical details such as the exact location of data on disk, and hard-
ware details of storage encoding, placement, compression, splitting, merging of
records, and so on are hidden from the user. Applications remain unaware of these
details. On the other hand, logical data independence is harder to achieve because it
allows structural and constraint changes without affecting application programs—a
much stricter requirement.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include
information on how to map requests and data among the various levels. The DBMS
uses additional software to accomplish these mappings by referring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at the next higher level remains unchanged; only
the mapping between the two levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

The three-schema architecture can make it easier to achieve true data indepen-
dence, both physical and logical. However, the two levels of mappings create an
overhead during compilation or execution of a query or program, leading to ineffi-
ciencies in the DBMS. Because of this, few DBMSs have implemented the full three-
schema architecture.

2.3 Database Languages and Interfaces

In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS
must provide appropriate languages and interfaces for each category of users. In this
section we discuss the types of languages and interfaces provided by a DBMS and
the user categories targeted by each interface.

2.3.1 DBMS Languages

Once the design of a database is completed and a DBMS is chosen to implement the
database, the first step is to specify conceptual and internal schemas for the database
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and any mappings between the two. In many DBMSs where no strict separation of
levels is maintained, one language, called the data definition language (DDL), is
used by the DBA and by database designers to define both schemas. The DBMS will
have a DDL compiler whose function is to process DDL statements in order to iden-
tify descriptions of the schema constructs and to store the schema description in the
DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and inter-
nal levels, the DDL is used to specify the conceptual schema only. Another language,
the storage definition language (SDL), is used to specify the internal schema. The
mappings between the two schemas may be specified in either one of these lan-
guages. In most relational DBMSs today, there is no specific language that performs
the role of SDL. Instead, the internal schema is specified by a combination of func-
tions, parameters, and specifications related to storage. These permit the DBA staff
to control indexing choices and mapping of data to storage. For a true three-schema
architecture, we would need a third language, the view definition language (VDL),
to specify user views and their mappings to the conceptual schema, but in most
DBMSs the DDL is used to define both conceptual and external schemas. In relational
DBMSs, SQL is used in the role of VDL to define user or application views as results
of predefined queries (see Chapters 4 and 5).

Once the database schemas are compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
vides a set of operations or a language called the data manipulation language
(DML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered dis-
tinct languages; rather, a comprehensive integrated language is used that includes
constructs for conceptual schema definition, view definition, and data manipula-
tion. Storage definition is typically kept separate, since it is used for defining physi-
cal storage structures to fine-tune the performance of the database system, which is
usually done by the DBA staff. A typical example of a comprehensive database lan-
guage is the SQL relational database language (see Chapters 4 and 5), which repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint
specification, schema evolution, and other features. The SDL was a component in
early versions of SQL but has been removed from the language to keep it at the con-
ceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be
used on its own to specify complex database operations concisely. Many DBMSs
allow high-level DML statements either to be entered interactively from a display
monitor or terminal or to be embedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identified within the program so
that they can be extracted by a precompiler and processed by the DBMS. A low-
level or procedural DML must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from
the database and processes each separately. Therefore, it needs to use programming
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language constructs, such as looping, to retrieve and process each record from a set
of records. Low-level DMLs are also called record-at-a-time DMLs because of this
property. DL/1, a DML designed for the hierarchical model, is a low-level DML that
uses commands such as GET UNIQUE, GET NEXT, or GET NEXT WITHIN PARENT to
navigate from record to record within a hierarchy of records in the database. High-
level DMLs, such as SQL, can specify and retrieve many records in a single DML
statement; therefore, they are called set-at-a-time or set-oriented DMLs. A query in
a high-level DML often specifies which data to retrieve rather than how to retrieve it;
therefore, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a
general-purpose programming language, that language is called the host language
and the DML is called the data sublanguage.!” On the other hand, a high-level
DML used in a standalone interactive manner is called a query language. In general,
both retrieval and update commands of a high-level DML may be used interactively
and are hence considered part of the query language.!!

Casual end users typically use a high-level query language to specify their requests,
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usually are user-friendly interfaces for interacting with the data-
base; these can also be used by casual users or others who do not want to learn the
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-Based Interfaces for Web Clients or Browsing. These interfaces pre-
sent the user with lists of options (called menus) that lead the user through the for-
mulation of a request. Menus do away with the need to memorize the specific
commands and syntax of a query language; rather, the query is composed step-by-
step by picking options from a menu that is displayed by the system. Pull-down
menus are a very popular technique in Web-based user interfaces. They are also
often used in browsing interfaces, which allow a user to look through the contents
of a database in an exploratory and unstructured manner.

Forms-Based Interfaces. A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they can fill out only
certain entries, in which case the DBMS will retrieve matching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
faces to canned transactions. Many DBMSs have forms specification languages,

10In object databases, the host and data sublanguages typically form one integrated language—for
example, C++ with some extensions to support database functionality. Some relational systems also
provide integrated languages—for example, Oracle’s PL/SQL.

" According to the English meaning of the word query, it should really be used to describe retrievals
only, not updates.
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which are special languages that help programmers specify such forms. SQL*Forms
is a form-based language that specifies queries using a form designed in conjunc-
tion with the relational database schema. Oracle Forms is a component of the
Oracle product suite that provides an extensive set of features to design and build
applications using forms. Some systems have utilities that define a form by letting
the end user interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in dia-
grammatic form. The user then can specify a query by manipulating the diagram. In
many cases, GUIs utilize both menus and forms. Most GUIs use a pointing device,
such as a mouse, to select certain parts of the displayed schema diagram.

Natural Language Interfaces. These interfaces accept requests written in
English or some other language and attempt to understand them. A natural lan-
guage interface usually has its own schema, which is similar to the database concep-
tual schema, as well as a dictionary of important words. The natural language
interface refers to the words in its schema, as well as to the set of standard words in
its dictionary, to interpret the request. If the interpretation is successful, the inter-
face generates a high-level query corresponding to the natural language request and
submits it to the DBMS for processing; otherwise, a dialogue is started with the user
to clarify the request. The capabilities of natural language interfaces have not
advanced rapidly. Today, we see search engines that accept strings of natural lan-
guage (like English or Spanish) words and match them with documents at specific
sites (for local search engines) or Web pages on the Web at large (for engines like
Google or Ask). They use predefined indexes on words and use ranking functions to
retrieve and present resulting documents in a decreasing degree of match. Such
“free form” textual query interfaces are not yet common in structured relational or
legacy model databases, although a research area called keyword-based querying
has emerged recently for relational databases.

Speech Input and Output. Limited use of speech as an input query and speech
as an answer to a question or result of a request is becoming commonplace.
Applications with limited vocabularies such as inquiries for telephone directory,
flight arrival/departure, and credit card account information are allowing speech
for input and output to enable customers to access this information. The speech
input is detected using a library of predefined words and used to set up the param-
eters that are supplied to the queries. For output, a similar conversion from text or
numbers into speech takes place.

Interfaces for Parametric Users. Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. For example, a
teller is able to use single function keys to invoke routine and repetitive transactions
such as account deposits or withdrawals, or balance inquiries. Systems analysts and
programmers design and implement a special interface for each known class of
naive users. Usually a small set of abbreviated commands is included, with the goal
of minimizing the number of keystrokes required for each request. For example,
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function keys in a terminal can be programmed to initiate various commands. This
allows the parametric user to proceed with a minimal number of keystrokes.

Interfaces for the DBA. Most database systems contain privileged commands
that can be used only by the DBA staff. These include commands for creating
accounts, setting system parameters, granting account authorization, changing a
schema, and reorganizing the storage structures of a database.

2.4 The Database System Environment

A DBMS is a complex software system. In this section we discuss the types of soft-
ware components that constitute a DBMS and the types of computer system soft-
ware with which the DBMS interacts.

2.4.1 DBMS Component Modules

Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The fig-
ure is divided into two parts. The top part of the figure refers to the various users of
the database environment and their interfaces. The lower part shows the internals of
the DBMS responsible for storage of data and processing of transactions.

The database and the DBMS catalog are usually stored on disk. Access to the disk is
controlled primarily by the operating system (OS), which schedules disk
read/write. Many DBMSs have their own buffer management module to schedule
disk read/write, because this has a considerable effect on performance. Reducing
disk read/write improves performance considerably. A higher-level stored data
manager module of the DBMS controls access to DBMS information that is stored
on disk, whether it is part of the database or the catalog.

Let us consider the top part of Figure 2.3 first. It shows interfaces for the DBA staff,
casual users who work with interactive interfaces to formulate queries, application
programmers who create programs using some host programming languages, and
parametric users who do data entry work by supplying parameters to predefined
transactions. The DBA staff works on defining the database and tuning it by making
changes to its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of files, names and data types of data items,
storage details of each file, mapping information among schemas, and constraints.
In addition, the catalog stores many other types of information that are needed by
the DBMS modules, which can then look up the catalog information as needed.

Casual users and persons with occasional need for information from the database
interact using some form of interface, which we call the interactive query interface
in Figure 2.3. We have not explicitly shown any menu-based or form-based interac-
tion that may be used to generate the interactive query automatically. These queries
are parsed and validated for correctness of the query syntax, the names of files and
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data elements, and so on by a query compiler that compiles them into an internal
form. This internal query is subjected to query optimization (discussed in Chapters
19 and 20). Among other things, the query optimizer is concerned with the
rearrangement and possible reordering of operations, elimination of redundancies,
and use of correct algorithms and indexes during execution. It consults the system
catalog for statistical and other physical information about the stored data and gen-
erates executable code that performs the necessary operations for the query and
makes calls on the runtime processor.
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Application programmers write programs in host languages such as Java, C, or C++
that are submitted to a precompiler. The precompiler extracts DML commands
from an application program written in a host programming language. These com-
mands are sent to the DML compiler for compilation into object code for database
access. The rest of the program is sent to the host language compiler. The object
codes for the DML commands and the rest of the program are linked, forming a
canned transaction whose executable code includes calls to the runtime database
processor. Canned transactions are executed repeatedly by parametric users, who
simply supply the parameters to the transactions. Each execution is considered to be
a separate transaction. An example is a bank withdrawal transaction where the
account number and the amount may be supplied as parameters.

In the lower part of Figure 2.3, the runtime database processor executes (1) the priv-
ileged commands, (2) the executable query plans, and (3) the canned transactions
with runtime parameters. It works with the system catalog and may update it with
statistics. It also works with the stored data manager, which in turn uses basic oper-
ating system services for carrying out low-level input/output (read/write) operations
between the disk and main memory. The runtime database processor handles other
aspects of data transfer, such as management of buffers in the main memory. Some
DBMSs have their own buffer management module while others depend on the OS
for buffer management. We have shown concurrency control and backup and recov-
ery systems separately as a module in this figure. They are integrated into the work-
ing of the runtime database processor for purposes of transaction management.

It is now common to have the client program that accesses the DBMS running on a
separate computer from the computer on which the database resides. The former is
called the client computer running a DBMS client software and the latter is called
the database server. In some cases, the client accesses a middle computer, called the
application server, which in turn accesses the database server. We elaborate on this
topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical
DBMS modules. The DBMS interacts with the operating system when disk
accesses—to the database or to the catalog—are needed. If the computer system is
shared by many users, the OS will schedule DBMS disk access requests and DBMS
processing along with other processes. On the other hand, if the computer system is
mainly dedicated to running the database server, the DBMS will control main mem-
ory buffering of disk pages. The DBMS also interfaces with compilers for general-
purpose host programming languages, and with application servers and client
programs running on separate machines through the system network interface.

2.4.2 Database System Utilities

In addition to possessing the software modules just described, most DBMSs have
database utilities that help the DBA manage the database system. Common utilities
have the following types of functions:

B Loading. A loading utility is used to load existing data files—such as text
files or sequential files—into the database. Usually, the current (source) for-
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mat of the data file and the desired (target) database file structure are speci-
fied to the utility, which then automatically reformats the data and stores it
in the database. With the proliferation of DBMSs, transferring data from one
DBMS to another is becoming common in many organizations. Some ven-
dors are offering products that generate the appropriate loading programs,
given the existing source and target database storage descriptions (internal
schemas). Such tools are also called conversion tools. For the hierarchical
DBMS called IMS (IBM) and for many network DBMSs including IDMS
(Computer Associates), SUPRA (Cincom), and IMAGE (HP), the vendors or
third-party companies are making a variety of conversion tools available
(e.g., Cincom’s SUPRA Server SQL) to transform data into the relational
model.

B Backup. A backup utility creates a backup copy of the database, usually by
dumping the entire database onto tape or other mass storage medium. The
backup copy can be used to restore the database in case of catastrophic disk
failure. Incremental backups are also often used, where only changes since
the previous backup are recorded. Incremental backup is more complex, but
saves storage space.

B Database storage reorganization. This utility can be used to reorganize a set
of database files into different file organizations, and create new access paths
to improve performance.

B Performance monitoring. Such a utility monitors database usage and pro-
vides statistics to the DBA. The DBA uses the statistics in making decisions
such as whether or not to reorganize files or whether to add or drop indexes
to improve performance.

Other utilities may be available for sorting files, handling data compression,
monitoring access by users, interfacing with the network, and performing other
functions.

2.4.3 Tools, Application Environments,
and Communications Facilities

Other tools are often available to database designers, users, and the DBMS. CASE
tools!? are used in the design phase of database systems. Another tool that can be
quite useful in large organizations is an expanded data dictionary (or data reposi-
tory) system. In addition to storing catalog information about schemas and con-
straints, the data dictionary stores other information, such as design decisions,
usage standards, application program descriptions, and user information. Such a
system is also called an information repository. This information can be accessed
directly by users or the DBA when needed. A data dictionary utility is similar to the
DBMS catalog, but it includes a wider variety of information and is accessed mainly
by users rather than by the DBMS software.

12Although CASE stands for computer-aided software engineering, many CASE tools are used primarily
for database design.
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Application development environments, such as PowerBuilder (Sybase) or
JBuilder (Borland), have been quite popular. These systems provide an environment
for developing database applications and include facilities that help in many facets
of database systems, including database design, GUI development, querying and
updating, and application program development.

The DBMS also needs to interface with communications software, whose function
is to allow users at locations remote from the database system site to access the data-
base through computer terminals, workstations, or personal computers. These are
connected to the database site through data communications hardware such as
Internet routers, phone lines, long-haul networks, local networks, or satellite com-
munication devices. Many commercial database systems have communication
packages that work with the DBMS. The integrated DBMS and data communica-
tions system is called a DB/DC system. In addition, some distributed DBMSs are
physically distributed over multiple machines. In this case, communications net-
works are needed to connect the machines. These are often local area networks
(LANSs), but they can also be other types of networks.

2.5 Centralized and Client/Server Architectures
for DBMSs

2.5.1 Centralized DBMSs Architecture

Architectures for DBMSs have followed trends similar to those for general computer
system architectures. Earlier architectures used mainframe computers to provide
the main processing for all system functions, including user application programs
and user interface programs, as well as all the DBMS functionality. The reason was
that most users accessed such systems via computer terminals that did not have pro-
cessing power and only provided display capabilities. Therefore, all processing was
performed remotely on the computer system, and only display information and
controls were sent from the computer to the display terminals, which were con-
nected to the central computer via various types of communications networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations. At first, database systems used these computers similarly to how they
had used display terminals, so that the DBMS itself was still a centralized DBMS in
which all the DBMS functionality, application program execution, and user inter-
face processing were carried out on one machine. Figure 2.4 illustrates the physical
components in a centralized architecture. Gradually, DBMS systems started to
exploit the available processing power at the user side, which led to client/server
DBMS architectures.

2.5.2 Basic Client/Server Architectures

First, we discuss client/server architecture in general, then we see how it is applied to
DBMSs. The client/server architecture was developed to deal with computing envi-
ronments in which a large number of PCs, workstations, file servers, printers, data-
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base servers, Web servers, e-mail servers, and other software and equipment are
connected via a network. The idea is to define specialized servers with specific
functionalities. For example, it is possible to connect a number of PCs or small
workstations as clients to a file server that maintains the files of the client machines.
Another machine can be designated as a printer server by being connected to vari-
ous printers; all print requests by the clients are forwarded to this machine. Web
servers or e-mail servers also fall into the specialized server category. The resources
provided by specialized servers can be accessed by many client machines. The client
machines provide the user with the appropriate interfaces to utilize these servers, as
well as with local processing power to run local applications. This concept can be
carried over to other software packages, with specialized programs—such as a CAD
(computer-aided design) package—being stored on specific server machines and
being made accessible to multiple clients. Figure 2.5 illustrates client/server archi-
tecture at the logical level; Figure 2.6 is a simplified diagram that shows the physical
architecture. Some machines would be client sites only (for example, diskless work-
stations or workstations/PCs with disks that have only client software installed).
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Print File DBMS
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Figure 2.5
Logical two-tier
client/server
architecture.
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Figure 2.6

Physical two-tier client/server

architecture.

Diskless Client Server
Client with Disk Server and Client

Client || || Client |

Site 1 Site 2 Site 3 Site n

Communication
Network

Other machines would be dedicated servers, and others would have both client and
server functionality.

The concept of client/server architecture assumes an underlying framework that
consists of many PCs and workstations as well as a smaller number of mainframe
machines, connected via LANs and other types of computer networks. A client in
this framework is typically a user machine that provides user interface capabilities
and local processing. When a client requires access to additional functionality—
such as database access—that does not exist at that machine, it connects to a server
that provides the needed functionality. A server is a system containing both hard-
ware and software that can provide services to the client machines, such as file
access, printing, archiving, or database access. In general, some machines install
only client software, others only server software, and still others may include both
client and server software, as illustrated in Figure 2.6. However, it is more common
that client and server software usually run on separate machines. Two main types of
basic DBMS architectures were created on this underlying client/server framework:
two-tier and three-tier.'> We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs

In relational database management systems (RDBMSs), many of which started as
centralized systems, the system components that were first moved to the client side
were the user interface and application programs. Because SQL (see Chapters 4 and
5) provided a standard language for RDBMSs, this created a logical dividing point

13There are many other variations of client/server architectures. We discuss the two most basic ones
here.
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between client and server. Hence, the query and transaction functionality related to
SQL processing remained on the server side. In such an architecture, the server is
often called a query server or transaction server because it provides these two
functionalities. In an RDBMS, the server is also often called an SQL server.

The user interface programs and application programs can run on the client side.
When DBMS access is required, the program establishes a connection to the DBMS
(which is on the server side); once the connection is created, the client program can
communicate with the DBMS. A standard called Open Database Connectivity
(ODBC) provides an application programming interface (API), which allows
client-side programs to call the DBMS, as long as both client and server machines
have the necessary software installed. Most DBMS vendors provide ODBC drivers
for their systems. A client program can actually connect to several RDBMSs and
send query and transaction requests using the ODBC API, which are then processed
at the server sites. Any query results are sent back to the client program, which can
process and display the results as needed. A related standard for the Java program-
ming language, called JDBC, has also been defined. This allows Java client programs
to access one or more DBMSs through a standard interface.

The different approach to two-tier client/server architecture was taken by some
object-oriented DBMSs, where the software modules of the DBMS were divided
between client and server in a more integrated way. For example, the server level
may include the part of the DBMS software responsible for handling data storage on
disk pages, local concurrency control and recovery, buffering and caching of disk
pages, and other such functions. Meanwhile, the client level may handle the user
interface; data dictionary functions; DBMS interactions with programming lan-
guage compilers; global query optimization, concurrency control, and recovery
across multiple servers; structuring of complex objects from the data in the buffers;
and other such functions. In this approach, the client/server interaction is more
tightly coupled and is done internally by the DBMS modules—some of which reside
on the client and some on the server—rather than by the users/programmers. The
exact division of functionality can vary from system to system. In such a
client/server architecture, the server has been called a data server because it pro-
vides data in disk pages to the client. This data can then be structured into objects
for the client programs by the client-side DBMS software.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing
systems. The emergence of the Web changed the roles of clients and servers, leading
to the three-tier architecture.

2.5.4 Three-Tier and n-Tier Architectures
for Web Applications
Many Web applications use an architecture called the three-tier architecture, which

adds an intermediate layer between the client and the database server, as illustrated
in Figure 2.7(a).

a7
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This intermediate layer or middle tier is called the application server or the Web
server, depending on the application. This server plays an intermediary role by run-
ning application programs and storing business rules (procedures or constraints)
that are used to access data from the database server. It can also improve database
security by checking a client’s credentials before forwarding a request to the data-
base server. Clients contain GUT interfaces and some additional application-specific
business rules. The intermediate server accepts requests from the client, processes
the request and sends database queries and commands to the database server, and
then acts as a conduit for passing (partially) processed data from the database server
to the clients, where it may be processed further and filtered to be presented to users
in GUI format. Thus, the user interface, application rules, and data access act as the
three tiers. Figure 2.7(b) shows another architecture used by database and other
application package vendors. The presentation layer displays information to the
user and allows data entry. The business logic layer handles intermediate rules and
constraints before data is passed up to the user or down to the DBMS. The bottom
layer includes all data management services. The middle layer can also act as a Web
server, which retrieves query results from the database server and formats them into
dynamic Web pages that are viewed by the Web browser at the client side.

Other architectures have also been proposed. It is possible to divide the layers
between the user and the stored data further into finer components, thereby giving
rise to n-tier architectures, where n may be four or five tiers. Typically, the business
logic layer is divided into multiple layers. Besides distributing programming and
data throughout a network, n-tier applications afford the advantage that any one
tier can run on an appropriate processor or operating system platform and can be
handled independently. Vendors of ERP (enterprise resource planning) and CRM
(customer relationship management) packages often use a middleware layer, which
accounts for the front-end modules (clients) communicating with a number of
back-end databases (servers).
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Advances in encryption and decryption technology make it safer to transfer sensi-
tive data from server to client in encrypted form, where it will be decrypted. The lat-
ter can be done by the hardware or by advanced software. This technology gives
higher levels of data security, but the network security issues remain a major con-
cern. Various technologies for data compression also help to transfer large amounts
of data from servers to clients over wired and wireless networks.

2.6 Classification of Database
Management Systems

Several criteria are normally used to classify DBMSs. The first is the data model on
which the DBMS is based. The main data model used in many current commercial
DBMSs is the relational data model. The object data model has been implemented
in some commercial systems but has not had widespread use. Many legacy applica-
tions still run on database systems based on the hierarchical and network data
models. Examples of hierarchical DBMSs include IMS (IBM) and some other sys-
tems like System 2K (SAS Inc.) and TDMS. IMS is still used at governmental and
industrial installations, including hospitals and banks, although many of its users
have converted to relational systems. The network data model was used by many
vendors and the resulting products like IDMS (Cullinet—now Computer
Associates), DMS 1100 (Univac—now Unisys), IMAGE (Hewlett-Packard), VAX-
DBMS (Digital—then Compaq and now HP), and SUPRA (Cincom) still have a fol-
lowing and their user groups have their own active organizations. If we add IBM’s
popular VSAM file system to these, we can easily say that a reasonable percentage of
worldwide-computerized data is still in these so-called legacy database systems.

The relational DBMSs are evolving continuously, and, in particular, have been
incorporating many of the concepts that were developed in object databases. This
has led to a new class of DBMSs called object-relational DBMSs. We can categorize
DBMSs based on the data model: relational, object, object-relational, hierarchical,
network, and other.

More recently, some experimental DBMSs are based on the XML (eXtended
Markup Language) model, which is a tree-structured (hierarchical) data model.
These have been called native XML DBMSs. Several commercial relational DBMSs
have added XML interfaces and storage to their products.

The second criterion used to classify DBMSs is the number of users supported by
the system. Single-user systems support only one user at a time and are mostly used
with PCs. Multiuser systems, which include the majority of DBMSs, support con-
current multiple users.

The third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized
DBMS can support multiple users, but the DBMS and the database reside totally at
a single computer site. A distributed DBMS (DDBMS) can have the actual database
and DBMS software distributed over many sites, connected by a computer network.
Homogeneous DDBMSs use the same DBMS software at all the sites, whereas
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heterogeneous DDBMSs can use different DBMS software at each site. It is also
possible to develop middleware software to access several autonomous preexisting
databases stored under heterogeneousDBMSs. This leads to a federated DBMS (or
multidatabase system), in which the participating DBMSs are loosely coupled and
have a degree of local autonomy. Many DDBMSs use client-server architecture, as
we described in Section 2.5.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs based
on cost. Today we have open source (free) DBMS products like MySQL and
PostgreSQL that are supported by third-party vendors with additional services. The
main RDBMS products are available as free examination 30-day copy versions as
well as personal versions, which may cost under $100 and allow a fair amount of
functionality. The giant systems are being sold in modular form with components
to handle distribution, replication, parallel processing, mobile capability, and so on,
and with a large number of parameters that must be defined for the configuration.
Furthermore, they are sold in the form of licenses—site licenses allow unlimited use
of the database system with any number of copies running at the customer site.
Another type of license limits the number of concurrent users or the number of
user seats at a location. Standalone single user versions of some systems like
Microsoft Access are sold per copy or included in the overall configuration of a
desktop or laptop. In addition, data warehousing and mining features, as well as
support for additional data types, are made available at extra cost. It is possible to
pay millions of dollars for the installation and maintenance of large database sys-
tems annually.

We can also classify a DBMS on the basis of the types of access path options for
storing files. One well-known family of DBMSs is based on inverted file structures.
Finally, a DBMS can be general purpose or special purpose. When performance is
a primary consideration, a special-purpose DBMS can be designed and built for a
specific application; such a system cannot be used for other applications without
major changes. Many airline reservations and telephone directory systems devel-
oped in the past are special-purpose DBMSs. These fall into the category of online
transaction processing (OLTP) systems, which must support a large number of
concurrent transactions without imposing excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data model.
The basic relational data model represents a database as a collection of tables,
where each table can be stored as a separate file. The database in Figure 1.2 resem-
bles a relational representation. Most relational databases use the high-level query
language called SQL and support a limited form of user views. We discuss the rela-
tional model and its languages and operations in Chapters 3 through 6, and tech-
niques for programming relational applications in Chapters 13 and 14.

The object data model defines a database in terms of objects, their properties, and
their operations. Objects with the same structure and behavior belong to a class,
and classes are organized into hierarchies (or acyclic graphs). The operations of
each class are specified in terms of predefined procedures called methods.
Relational DBMSs have been extending their models to incorporate object database
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concepts and other capabilities; these systems are referred to as object-relational or
extended relational systems. We discuss object databases and object-relational sys-
tems in Chapter 11.

The XML model has emerged as a standard for exchanging data over the Web, and
has been used as a basis for implementing several prototype native XML systems.
XML uses hierarchical tree structures. It combines database concepts with concepts
from document representation models. Data is represented as elements; with the
use of tags, data can be nested to create complex hierarchical structures. This model
conceptually resembles the object model but uses different terminology. XML capa-
bilities have been added to many commercial DBMS products. We present an
overview of XML in Chapter 12.

Two older, historically important data models, now known as legacy data models,
are the network and hierarchical models. The network model represents data as
record types and also represents a limited type of 1:N relationship, called a set type.
A ©1:N, or one-to-many, relationship relates one instance of a record to many record
instances using some pointer linking mechanism in these models. Figure 2.8 shows
a network schema diagram for the database of Figure 2.1, where record types are
shown as rectangles and set types are shown as labeled directed arrows.

The network model, also known as the CODASYL DBTG model,'4 has an associated
record-at-a-time language that must be embedded in a host programming lan-
guage. The network DML was proposed in the 1971 Database Task Group (DBTG)
Report as an extension of the COBOL language. It provides commands for locating
records directly (e.g., FIND ANY <record-type> USING <field-list>, or FIND
DUPLICATE <record-type> USING <field-list>). It has commands to support tra-
versals within set-types (e.g., GET OWNER, GET {FIRST, NEXT, LAST} MEMBER
WITHIN <set-type> WHERE <condition>). It also has commands to store new data
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14CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is
the committee that specified the network model and its language.
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(e.g., STORE <record-type>) and to make it part of a set type (e.g., CONNECT
<record-type> TO <set-type>). The language also handles many additional consid-
erations, such as the currency of record types and set types, which are defined by the
current position of the navigation process within the database. It is prominently
used by IDMS, IMAGE, and SUPRA DBMSs today.

The hierarchical model represents data as hierarchical tree structures. Each hierar-
chy represents a number of related records. There is no standard language for the
hierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dom-
inated the DBMS market for over 20 years between 1965 and 1985 and is still a
widely used DBMS worldwide, holding a large percentage of data in governmental,
health care, and banking and insurance databases. Its DML, called DL/1, was a de
facto industry standard for a long time. DL/1 has commands to locate a record (e.g.,
GET { UNIQUE, NEXT} <record-type> WHERE <condition>). It has navigational
facilities to navigate within hierarchies (e.g., GET NEXT WITHIN PARENT or GET
{FIRST, NEXT} PATH <hierarchical-path-specification> WHERE <condition>). It has
appropriate facilities to store and update records (e.g., INSERT <record-type>,
REPLACE <record-type>). Currency issues during navigation are also handled with
additional features in the language.'®

2.7 Summary

In this chapter we introduced the main concepts used in database systems. We
defined a data model and we distinguished three main categories:
® High-level or conceptual data models (based on entities and relationships)
® Low-level or physical data models
B Representational or implementation data models (record-based, object-
oriented)

We distinguished the schema, or description of a database, from the database itself.
The schema does not change very often, whereas the database state changes every
time data is inserted, deleted, or modified. Then we described the three-schema
DBMS architecture, which allows three schema levels:

B An internal schema describes the physical storage structure of the database.
B A conceptual schema is a high-level description of the whole database.
® External schemas describe the views of different user groups.
A DBMS that cleanly separates the three levels must have mappings between the
schemas to transform requests and query results from one level to the next. Most

DBMSs do not separate the three levels completely. We used the three-schema archi-
tecture to define the concepts of logical and physical data independence.

15The full chapters on the network and hierarchical models from the second edition of this book are
available from this book’s Companion Website at http://www.aw.com/elmasri.
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Review Questions

Then we discussed the main types of languages and interfaces that DBMSs support.
A data definition language (DDL) is used to define the database conceptual schema.
In most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages or functions exist for specifying storage
structures. This distinction is fading away in today’s relational implementations,
with SQL serving as a catchall language to perform multiple roles, including view
definition. The storage definition part (SDL) was included in SQL’s early versions,
but is now typically implemented as special commands for the DBA in relational
DBMSs. The DBMS compiles all schema definitions and stores their descriptions in
the DBMS catalog.

A data manipulation language (DML) is used for specifying database retrievals and
updates. DMLs can be high level (set-oriented, nonprocedural) or low level (record-
oriented, procedural). A high-level DML can be embedded in a host programming
language, or it can be used as a standalone language; in the latter case it is often
called a query language.

We discussed different types of interfaces provided by DBMSs, and the types of
DBMS users with which each interface is associated. Then we discussed the database
system environment, typical DBMS software modules, and DBMS utilities for help-
ing users and the DBA staff perform their tasks. We continued with an overview of
the two-tier and three-tier architectures for database applications, progressively
moving toward n-tier, which are now common in many applications, particularly
Web database applications.

Finally, we classified DBMSs according to several criteria: data model, number of
users, number of sites, types of access paths, and cost. We discussed the availability
of DBMSs and additional modules—from no cost in the form of open source soft-
ware, to configurations that annually cost millions to maintain. We also pointed out
the variety of licensing arrangements for DBMS and related products. The main
classification of DBMSs is based on the data model. We briefly discussed the main
data models used in current commercial DBMSs.

Review Questions

2.1. Define the following terms: data model, database schema, database state,
internal schema, conceptual schema, external schema, data independence,
DDL, DML, SDL, VDL, query language, host language, data sublanguage,
database utility, catalog, client/server architecture, three-tier architecture, and
n-tier architecture.

2.2. Discuss the main categories of data models. What are the basic differences
between the relational model, the object model, and the XML model?

2.3. What is the difference between a database schema and a database state?

2.4. Describe the three-schema architecture. Why do we need mappings between
schema levels? How do different schema definition languages support this
architecture?

53



54

Chapter 2 Database System Concepts and Architecture

2.5.

2.6.
2.7

2.8.
2.9.

2.10.

2.11.

What is the difference between logical data independence and physical data
independence? Which one is harder to achieve? Why?

What is the difference between procedural and nonprocedural DMLs?

Discuss the different types of user-friendly interfaces and the types of users
who typically use each.

With what other computer system software does a DBMS interact?

What is the difference between the two-tier and three-tier client/server
architectures?

Discuss some types of database utilities and tools and their functions.

What is the additional functionality incorporated in n-tier architecture
(n>3)

Exercises

2.12.

2.13.

2.14.

2.15.

Think of different users for the database shown in Figure 1.2. What types of
applications would each user need? To which user category would each
belong, and what type of interface would each need?

Choose a database application with which you are familiar. Design a schema
and show a sample database for that application, using the notation of
Figures 1.2 and 2.1. What types of additional information and constraints
would you like to represent in the schema? Think of several users of your
database, and design a view for each.

If you were designing a Web-based system to make airline reservations and
sell airline tickets, which DBMS architecture would you choose from Section
2.5¢? Why? Why would the other architectures not be a good choice?

Consider Figure 2.1. In addition to constraints relating the values of
columns in one table to columns in another table, there are also constraints
that impose restrictions on values in a column or a combination of columns
within a table. One such constraint dictates that a column or a group of
columns must be unique across all rows in the table. For example, in the
STUDENT table, the Student_number column must be unique (to prevent two
different students from having the same Student_number). Identify the col-
umn or the group of columns in the other tables that must be unique across
all rows in the table.
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(http://www.eti.com) and the database administration tool, DBArtisan, from
Embarcadero Technologies (http://www.embarcadero.com).
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The Relational Data Model and
Relational Database Constraints

This chapter opens Part 2 of the book, which covers
relational databases. The relational data model was
first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd
1970), and it attracted immediate attention due to its simplicity and mathematical
foundation. The model uses the concept of a mathematical relation—which looks
somewhat like a table of values—as its basic building block, and has its theoretical
basis in set theory and first-order predicate logic. In this chapter we discuss the basic
characteristics of the model and its constraints.

The first commercial implementations of the relational model became available in
the early 1980s, such as the SQL/DS system on the MVS operating system by IBM
and the Oracle DBMS. Since then, the model has been implemented in a large num-
ber of commercial systems. Current popular relational DBMSs (RDBMSs) include
DB2 and Informix Dynamic Server (from IBM), Oracle and Rdb (from Oracle),
Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In addi-
tion, several open source systems, such as MySQL and PostgreSQL, are available.

Because of the importance of the relational model, all of Part 2 is devoted to this
model and some of the languages associated with it. In Chapters 4 and 5, we
describe the SQL query language, which is the standard for commercial relational
DBMSs. Chapter 6 covers the operations of the relational algebra and introduces the
relational calculus—these are two formal languages associated with the relational
model. The relational calculus is considered to be the basis for the SQL language,
and the relational algebra is used in the internals of many database implementations
for query processing and optimization (see Part 8 of the book).
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Other aspects of the relational model are presented in subsequent parts of the book.
Chapter 9 relates the relational model data structures to the constructs of the ER
and EER models (presented in Chapters 7 and 8), and presents algorithms for
designing a relational database schema by mapping a conceptual schema in the ER
or EER model into a relational representation. These mappings are incorporated
into many database design and CASE! tools. Chapters 13 and 14 in Part 5 discuss
the programming techniques used to access database systems and the notion of
connecting to relational databases via ODBC and JDBC standard protocols. We also
introduce the topic of Web database programming in Chapter 14. Chapters 15 and
16 in Part 6 present another aspect of the relational model, namely the formal con-
straints of functional and multivalued dependencies; these dependencies are used to
develop a relational database design theory based on the concept known as
normalization.

Data models that preceded the relational model include the hierarchical and net-
work models. They were proposed in the 1960s and were implemented in early
DBMSs during the late 1960s and early 1970s. Because of their historical impor-
tance and the existing user base for these DBMSs, we have included a summary of
the highlights of these models in Appendices D and E, which are available on this
book’s Companion Website at http://www.aw.com/elmasri. These models and sys-
tems are now referred to as legacy database systems.

In this chapter, we concentrate on describing the basic principles of the relational
model of data. We begin by defining the modeling concepts and notation of the
relational model in Section 3.1. Section 3.2 is devoted to a discussion of relational
constraints that are considered an important part of the relational model and are
automatically enforced in most relational DBMSs. Section 3.3 defines the update
operations of the relational model, discusses how violations of integrity constraints
are handled, and introduces the concept of a transaction. Section 3.4 summarizes
the chapter.

3.1 Relational Model Concepts

The relational model represents the database as a collection of relations. Informally,
each relation resembles a table of values or, to some extent, a flat file of records. It is
called a flat file because each record has a simple linear or flat structure. For exam-
ple, the database of files that was shown in Figure 1.2 is similar to the basic rela-
tional model representation. However, there are important differences between
relations and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of related data values. A row represents a fact that typically corresponds
to a real-world entity or relationship. The table name and column names are used to
help to interpret the meaning of the values in each row. For example, the first table
of Figure 1.2 is called STUDENT because each row represents facts about a particular

TCASE stands for computer-aided software engineering.
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student entity. The column names—Name, Student_number, Class, and Major—spec-
ify how to interpret the data values in each row, based on the column each value is
in. All values in a column are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column header
is called an attribute, and the table is called a relation. The data type describing the
types of values that can appear in each column is represented by a domain of possi-
ble values. We now define these terms—domain, tuple, attribute, and relation—
formally.

3.1 Domains, Attributes, Tuples, and Relations

A domain D is a set of atomic values. By atomic we mean that each value in the
domain is indivisible as far as the formal relational model is concerned. A common
method of specifying a domain is to specify a data type from which the data values
forming the domain are drawn. It is also useful to specify a name for the domain, to
help in interpreting its values. Some examples of domains follow:

B Usa_phone_numbers. The set of ten-digit phone numbers valid in the United
States.

B Local_phone_numbers. The set of seven-digit phone numbers valid within a
particular area code in the United States. The use of local phone numbers is
quickly becoming obsolete, being replaced by standard ten-digit numbers.

B Social_security_numbers. The set of valid nine-digit Social Security numbers.
(This is a unique identifier assigned to each person in the United States for
employment, tax, and benefits purposes.)

B Names: The set of character strings that represent names of persons.

B Grade_point_averages. Possible values of computed grade point averages;
each must be a real (floating-point) number between 0 and 4.

B Employee_ages. Possible ages of employees in a company; each must be an
integer value between 15 and 80.

B Academic_department_names. The set of academic department names in a
university, such as Computer Science, Economics, and Physics.

B Academic_department_codes. The set of academic department codes, such as
‘CS’, ‘ECON;, and ‘PHYS..

The preceding are called logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain
Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-
dddd, where each d is a numeric (decimal) digit and the first three digits form a
valid telephone area code. The data type for Employee_ages is an integer number
between 15 and 80. For Academic_department_names, the data type is the set of all
character strings that represent valid department names. A domain is thus given a
name, data type, and format. Additional information for interpreting the values of a
domain can also be given; for example, a numeric domain such as Person_weights
should have the units of measurement, such as pounds or kilograms.
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A relation schema? R, denoted by R(A,, A2 .., A,),is made up of a relation name R
and a list of attributes, A}, A,, ..., A,. Each attribute A, is the name of a role played
by some domain D in the relation schema R. D is called the domain of A; and is
denoted by dom(A,). A relation schema is used to describe a relation; R is called the
name of this relation. The degree (or arity) of a relation is the number of attributes
n of its relation schema.

A relation of degree seven, which stores information about university students,
would contain seven attributes describing each student. as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the preceding definition, we showed assignment of generic types such
as string or integer to the attributes. More precisely, we can specify the following
previously defined domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social_security_numbers; dom(HomePhone) =
USA_phone_numbers?, dom(Office_phone) = USA_phone_numbers, and dom(Gpa) =
Grade_point_averages. It is also possible to refer to attributes of a relation schema by
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)* r of the relation schema R(A, A,, ..., A), also
denoted by 7(R), is a set of n-tuples r = {t,, ,, ..., t, }. Each n-tuple ¢ is an ordered list
of n values t =<v,, v, ..., v,>, where each value v, 1 <i <, is an element of dom
(A;) or is a special NULL value. (NULL values are discussed further below and in
Section 3.1.2.) The ith value in tuple ¢, which corresponds to the attribute A, is
referred to as t[A;] or t.A; (or t[i] if we use the positional notation). The terms
relation intension for the schema R and relation extension for a relation state r(R)
are also commonly used.

Figure 3.1 shows an example of a STUDENT relation, which corresponds to the
STUDENT schema just specified. Each tuple in the relation represents a particular
student entity (or object). We display the relation as a table, where each tuple is
shown as a row and each attribute corresponds to a column header indicating a role
or interpretation of the values in that column. NULL values represent attributes
whose values are unknown or do not exist for some individual STUDENT tuple.

2A relation schema is sometimes called a relation scheme.

3With the large increase in phone numbers caused by the proliferation of mobile phones, most metropol-
itan areas in the U.S. now have multiple area codes, so seven-digit local dialing has been discontinued in
most areas. We changed this domain to Usa_phone_numbers instead of Local_phone_numbers which
would be a more general choice. This illustrates how database requirements can change over time.

4This has also been called a relation instance. We will not use this term because instance is also used
to refer to a single tuple or row.
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Relatlon Name Attr|butes
Name Home phone Address Offlce _phone | Age| Gpa
Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane | NULL 19 | 3.21
/( Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 | 2.89
Tuples i: Dick Davidson | 422-11-2320 | NULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
\ Rohan Panchal | 489-22-1100 | (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 | 3.93
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 | 3.25

Figure 3.1

The attributes and tuples of a relation STUDENT.

The earlier definition of a relation can be restated more formally using set theory
concepts as follows. A relation (or relation state) r(R) is a mathematical relation of
degree n on the domains dom(A,), dom(A,), ..., dom(A, ), which is a subset of the
Cartesian product (denoted by X) of the domains that define R:

r(R) € (dom(A,) X dom(A,) X ... x dom(A,))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a
domain D by |D| (assuming that all domains are finite), the total number of tuples
in the Cartesian product is

|dom(A,)| X |[dom(A,)| X ... X |[dom(A,)|

This product of cardinalities of all domains represents the total number of possible
instances or tuples that can ever exist in any relation state r(R). Of all these possible
combinations, a relation state at a given time—the current relation state—reflects
only the valid tuples that represent a particular state of the real world. In general, as
the state of the real world changes, so does the relation state, by being transformed
into another relation state. However, the schema R is relatively static and changes
very infrequently—for example, as a result of adding an attribute to represent new
information that was not originally stored in the relation.

It is possible for several attributes to have the same domain. The attribute names
indicate different roles, or interpretations, for the domain. For example, in the
STUDENT relation, the same domain USA_phone_numbers plays the role of
Home_phone, referring to the home phone of a student, and the role of Office_phone,
referring to the office phone of the student. A third possible attribute (not shown)
with the same domain could be Mobile_phone.

3.1.2 Characteristics of Relations

The earlier definition of relations implies certain characteristics that make a relation
different from a file or a table. We now discuss some of these characteristics.
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Ordering of Tuples in a Relation. A relation is defined as a set of tuples.
Mathematically, elements of a set have no order among them; hence, tuples in a rela-
tion do not have any particular order. In other words, a relation is not sensitive to
the ordering of tuples. However, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates
first, second, ith, and last records in the file. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.

Tuple ordering is not part of a relation definition because a relation attempts to rep-
resent facts at a logical or abstract level. Many tuple orders can be specified on the
same relation. For example, tuples in the STUDENT relation in Figure 3.1 could be
ordered by values of Name, Ssn, Age, or some other attribute. The definition of a rela-
tion does not specify any order: There is no preference for one ordering over another.
Hence, the relation displayed in Figure 3.2 is considered identical to the one shown in
Figure 3.1. When a relation is implemented as a file or displayed as a table, a particu-
lar ordering may be specified on the records of the file or the rows of the table.

Ordering of Values within a Tuple and an Alternative Definition of a
Relation. According to the preceding definition of a relation, an n-tuple is an
ordered list of n values, so the ordering of values in a tuple—and hence of attributes
in a relation schema—is important. However, at a more abstract level, the order of
attributes and their values is not that important as long as the correspondence
between attributes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values
in a tuple unnecessary. In this definition, a relation schema R ={A, A,, ..., A, } isa
set of attributes (instead of a list), and a relation state r(R) is a finite set of mappings
r={t},ty ..., t,}, where each tuple ¢, is a mapping from R to D, and D is the union
(denoted by L) of the attribute domains; that is, D = dom(A,) U dom(A,) U ... U
dom(A,). In this definition, t[A,;] must be in dom(A;) for 1 <i<n for each mapping
tin r. Each mapping ¢, is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a set
of (<attribute>, <value>) pairs, where each pair gives the value of the mapping
from an attribute A; to a value v; from dom(A;). The ordering of attributes is not

Figure 3.2

The relation STUDENT from Figure 3.1 with a different order of tuples.
STUDENT

Name Ssn Home_phone Address Office_phone | Age| Gpa

Dick Davidson | 422-11-2320 | NULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 | 8.256
Rohan Panchal | 489-22-1100| (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 | 3.93
Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 | 2.89
Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane| NULL 19 | 3.21
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important, because the attribute name appears with its value. By this definition, the
two tuples shown in Figure 3.3 are identical. This makes sense at an abstract level,
since there really is no reason to prefer having one attribute value appear before
another in a tuple.

When a relation is implemented as a file, the attributes are physically ordered as
fields within a record. We will generally use the first definition of relation, where
the attributes and the values within tuples are ordered, because it simplifies much of
the notation. However, the alternative definition given here is more general.’

Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that
is, it is not divisible into components within the framework of the basic relational
model. Hence, composite and multivalued attributes (see Chapter 7) are not
allowed. This model is sometimes called the flat relational model. Much of the the-
ory behind the relational model was developed with this assumption in mind,
which is called the first normal form assumption.® Hence, multivalued attributes
must be represented by separate relations, and composite attributes are represented
only by their simple component attributes in the basic relational model.”

An important concept is that of NULL values, which are used to represent the values
of attributes that may be unknown or may not apply to a tuple. A special value,
called NULL, is used in these cases. For example, in Figure 3.1, some STUDENT tuples
have NULL for their office phones because they do not have an office (that is, office
phone does not apply to these students). Another student has a NULL for home
phone, presumably because either he does not have a home phone or he has one but
we do not know it (value is unknown). In general, we can have several meanings for
NULL values, such as value unknown, value exists but is not available, or attribute
does not apply to this tuple (also known as value undefined). An example of the last
type of NULL will occur if we add an attribute Visa_status to the STUDENT relation

65

Figure 3.3
Two identical tuples when the order of attributes and values is not part of relation definition.

t =< (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),

(Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t =< (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),
(Office_phone, (817)749-1253),(Gpa, 3.53),(Home_phone, NULL)>

5As we shall see, the alternative definition of relation is useful when we discuss query processing and
optimization in Chapter 19.

6We discuss this assumption in more detail in Chapter 15.

"Extensions of the relational model remove these restrictions. For example, object-relational systems
(Chapter 11) allow complex-structured attributes, as do the non-first normal form or nested relational
models.
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that applies only to tuples representing foreign students. It is possible to devise dif-
ferent codes for different meanings of NULL values. Incorporating different types of
NULL values into relational model operations (see Chapter 6) has proven difficult
and is outside the scope of our presentation.

The exact meaning of a NULL value governs how it fares during arithmetic aggrega-
tions or comparisons with other values. For example, a comparison of two NULL
values leads to ambiguities—if both Customer A and B have NULL addresses, it does
not mean they have the same address. During database design, it is best to avoid
NULL values as much as possible. We will discuss this further in Chapters 5 and 6 in
the context of operations and queries, and in Chapter 15 in the context of database
design and normalization.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted
as a declaration or a type of assertion. For example, the schema of the STUDENT
relation of Figure 3.1 asserts that, in general, a student entity has a Name, Ssn,
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can
then be interpreted as a fact or a particular instance of the assertion. For example,
the first tuple in Figure 3.1 asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other relations
may represent facts about relationships. For example, a relation schema MAJORS
(Student_ssn, Department_code) asserts that students major in academic disciplines. A
tuple in this relation relates a student to his or her major discipline. Hence, the rela-
tional model represents facts about both entities and relationships uniformly as rela-
tions. This sometimes compromises understandability because one has to guess
whether a relation represents an entity type or a relationship type. We introduce the
Entity-Relationship (ER) model in detail in Chapter 7 where the entity and relation-
ship concepts will be described in detail. The mapping procedures in Chapter 9 show
how different constructs of the ER and EER (Enhanced ER model covered in Chapter
8) conceptual data models (see Part 3) get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate. For example,
the predicate STUDENT (Name, Ssn, ...) is true for the five tuples in relation
STUDENT of Figure 3.1. These tuples represent five different propositions or facts in
the real world. This interpretation is quite useful in the context of logical program-
ming languages, such as Prolog, because it allows the relational model to be used
within these languages (see Section 26.5). An assumption called the closed world
assumption states that the only true facts in the universe are those present within
the extension (state) of the relation(s). Any other combination of values makes the
predicate false.

3.1.3 Relational Model Notation

We will use the following notation in our presentation:

= Arelation schema R of degree n is denoted by R(A, A,, ..., A, ).

> 2) > n



3.2 Relational Model Constraints and Relational Database Schemas

The uppercase letters Q, R, S denote relation names.
The lowercase letters g, r, s denote relation states.

The letters ¢, u, v denote tuples.

In general, the name of a relation schema such as STUDENT also indicates the
current set of tuples in that relation—the current relation state—whereas
STUDENT(Name, Ssn, ...) refers only to the relation schema.

B An attribute A can be qualified with the relation name R to which it belongs
by using the dot notation R.A—for example, STUDENT.Name or
STUDENT.Age. This is because the same name may be used for two attributes
in different relations. However, all attribute names in a particular relation
must be distinct.

® An n-tuple tin a relation 7(R) is denoted by t = <v,, v, ..., V> where v;is the
value corresponding to attribute A;. The following notation refers to
component values of tuples:

® Both #[A;] and t.A; (and sometimes t[7]) refer to the value v, in ¢ for attribute
A.
1
® Both t[Au, A, ...,AZ] and t.(Au, A, ...,AZ), where ApA, ... Alsa list of
attributes from R, refer to the subtuple of values Wy Vi wees V> from t cor-
responding to the attributes specified in the list.

As an example, consider the tuple t = <‘Barbara Benson), ‘533-69-1238’, ‘(817)839-
8461’, ‘7384 Fontana Lane), NULL, 19, 3.25> from the STUDENT relation in Figure
3.1; we have t[Name] = <‘Barbara Benson’>, and t[Ssn, Gpa, Age] = <‘533-69-1238,
3.25,19>.

3.2 Relational Model Constraints
and Relational Database Schemas

So far, we have discussed the characteristics of single relations. In a relational data-
base, there will typically be many relations, and the tuples in those relations are usu-
ally related in various ways. The state of the whole database will correspond to the
states of all its relations at a particular point in time. There are generally many
restrictions or constraints on the actual values in a database state. These constraints
are derived from the rules in the miniworld that the database represents, as we dis-
cussed in Section 1.6.8.

In this section, we discuss the various restrictions on data that can be specified on a
relational database in the form of constraints. Constraints on databases can gener-
ally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent
model-based constraints or implicit constraints.

2. Constraints that can be directly expressed in schemas of the data model, typ-
ically by specifying them in the DDL (data definition language, see Section
2.3.1). We call these schema-based constraints or explicit constraints.

67



68

Chapter 3 The Relational Data Model and Relational Database Constraints

3. Constraints that cannot be directly expressed in the schemas of the data
model, and hence must be expressed and enforced by the application pro-
grams. We call these application-based or semantic constraints or business
rules.

The characteristics of relations that we discussed in Section 3.1.2 are the inherent
constraints of the relational model and belong to the first category. For example, the
constraint that a relation cannot have duplicate tuples is an inherent constraint. The
constraints we discuss in this section are of the second category, namely, constraints
that can be expressed in the schema of the relational model via the DDL.
Constraints in the third category are more general, relate to the meaning as well as
behavior of attributes, and are difficult to express and enforce within the data
model, so they are usually checked within the application programs that perform
database updates.

Another important category of constraints is data dependencies, which include
functional dependencies and multivalued dependencies. They are used mainly for
testing the “goodness” of the design of a relational database and are utilized in a
process called normalization, which is discussed in Chapters 15 and 16.

The schema-based constraints include domain constraints, key constraints, con-
straints on NULLs, entity integrity constraints, and referential integrity constraints.

3.2.1 Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute A
must be an atomic value from the domain dom(A). We have already discussed the
ways in which domains can be specified in Section 3.1.1. The data types associated
with domains typically include standard numeric data types for integers (such as
short integer, integer, and long integer) and real numbers (float and double-
precision float). Characters, Booleans, fixed-length strings, and variable-length
strings are also available, as are date, time, timestamp, and money, or other special
data types. Other possible domains may be described by a subrange of values from a
data type or as an enumerated data type in which all possible values are explicitly
listed. Rather than describe these in detail here, we discuss the data types offered by
the SQL relational standard in Section 4.1.

3.2.2 Key Constraints and Constraints on NULL Values

In the formal relational model, a relation is defined as a set of tuples. By definition,
all elements of a set are distinct; hence, all tuples in a relation must also be distinct.
This means that no two tuples can have the same combination of values for all their
attributes. Usually, there are other subsets of attributes of a relation schema R with
the property that no two tuples in any relation state r of R should have the same
combination of values for these attributes. Suppose that we denote one such subset
of attributes by SK; then for any two distinct tuples ¢, and ¢, in a relation state r of R,
we have the constraint that:

t,[SK] # ,[SK]
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Any such set of attributes SK is called a superkey of the relation schema R. A
superkey SK specifies a uniqueness constraint that no two distinct tuples in any state
r of R can have the same value for SK. Every relation has at least one default
superkey—the set of all its attributes. A superkey can have redundant attributes,
however, so a more useful concept is that of a key, which has no redundancy. A key
K of a relation schema R is a superkey of R with the additional property that remov-
ing any attribute A from K leaves a set of attributes K’ that is not a superkey of R any
more. Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical values
for (all) the attributes in the key. This first property also applies to a
superkey.

2. It is a minimal superkey—that is, a superkey from which we cannot remove
any attributes and still have the uniqueness constraint in condition 1 hold.
This property is not required by a superkey.

Whereas the first property applies to both keys and superkeys, the second property
is required only for keys. Hence, a key is also a superkey but not vice versa. Consider
the STUDENT relation of Figure 3.1. The attribute set {Ssn} is a key of STUDENT
because no two student tuples can have the same value for Ssn.3 Any set of attrib-
utes that includes Ssn—for example, {Ssn, Name, Age}—is a superkey. However, the
superkey {Ssn, Name, Age} is not a key of STUDENT because removing Name or Age
or both from the set still leaves us with a superkey. In general, any superkey formed
from a single attribute is also a key. A key with multiple attributes must require all
its attributes together to have the uniqueness property.

The value of a key attribute can be used to identify uniquely each tuple in the rela-
tion. For example, the Ssn value 305-61-2435 identifies uniquely the tuple corre-
sponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes
constituting a key is a property of the relation schema; it is a constraint that should
hold on every valid relation state of the schema. A key is determined from the mean-
ing of the attributes, and the property is time-invariant: It must continue to hold
when we insert new tuples in the relation. For example, we cannot and should not
designate the Name attribute of the STUDENT relation in Figure 3.1 as a key because
it is possible that two students with identical names will exist at some point in a
valid state.”

In general, a relation schema may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 3.4 has two
candidate keys: License_number and Engine_serial_number. It is common to designate
one of the candidate keys as the primary key of the relation. This is the candidate
key whose values are used to identify tuples in the relation. We use the convention
that the attributes that form the primary key of a relation schema are underlined, as
shown in Figure 3.4. Notice that when a relation schema has several candidate keys,

8Note that Ssn is also a superkey.

9Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—
must be used to distinguish between identical names.
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Figure 3.4

The CAR relation, with
two candidate keys:
License_number and
Engine_serial_number.

CAR

License_number | Engine_serial_number Make Model | Year
Texas ABC-739 AB69352 Ford Mustang | 02
Florida TVP-347 B43696 Oldsmobile | Cutlass 05
New York MPO-22 X83554 Oldsmobile | Delta 01
California 432-TFY C43742 Mercedes | 190-D 99
California RSK-629 Y82935 Toyota Camry 04
Texas RSK-629 U028365 Jaguar XJS 04

the choice of one to become the primary key is somewhat arbitrary; however, it is
usually better to choose a primary key with a single attribute or a small number of
attributes. The other candidate keys are designated as unique keys, and are not
underlined.

Another constraint on attributes specifies whether NULL values are or are not per-
mitted. For example, if every STUDENT tuple must have a valid, non-NULL value for
the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

3.2.3 Relational Databases and Relational
Database Schemas

The definitions and constraints we have discussed so far apply to single relations
and their attributes. A relational database usually contains many relations, with
tuples in relations that are related in various ways. In this section we define a rela-
tional database and a relational database schema.

A relational database schema S is a set of relation schemas S = {R;;R,, ..., R, } and
a set of integrity constraints IC. A relational database state!” DB of S is a set of
relation states DB = {rl, T «es I} such that each r; is a state of R; and such that the
r; relation states satisfy the integrity constraints specified in IC. Figure 3.5 shows a
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,
DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}. The underlined attrib-
utes represent primary keys. Figure 3.6 shows a relational database state corres-
ponding to the COMPANY schema. We will use this schema and database state in
this chapter and in Chapters 4 through 6 for developing sample queries in different
relational languages. (The data shown here is expanded and available for loading as
a populated database from the Companion Website for the book, and can be used
for the hands-on project exercises at the end of the chapters.)

When we refer to a relational database, we implicitly include both its schema and its
current state. A database state that does not obey all the integrity constraints is

10A relational database state is sometimes called a relational database instance. However, as we men-
tioned earlier, we will not use the term instance since it also applies to single tuples.
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EMPLOYEE
| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno |

DEPARTMENT
| Dname | Dnumber | Mgr_ssn| Mgr_start_date|

DEPT_LOCATIONS

| Dnumber | Dlocation |

PROJECT
| Pname | Pnumber | Plocation | Dnum
WORKS_ON
|Essn | Pno | Hours |
Figure 3.5
DEPENDENT Schema diagram for the

COMPANY relational
database schema.

| Essn | Dependent_name | Sex | Bdate | Relationship

called an invalid state, and a state that satisfies all the constraints in the defined set
of integrity constraints IC is called a valid state.

In Figure 3.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS
stands for the same real-world concept—the number given to a department. That
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts may have
the same name in different relations. For example, we could have used the attribute
name Name for both Pname of PROJECT and Dname of DEPARTMENT; in this case,
we would have two attributes that share the same name but represent different real-
world concepts—project names and department names.

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical
attribute names in all relations. This creates problems when the same real-world
concept is used in different roles (meanings) in the same relation. For example, the
concept of Social Security number appears twice in the EMPLOYEE relation of
Figure 3.5: once in the role of the employee’s SSN, and once in the role of the super-
visor’s SSN. We are required to give them distinct attribute names—Ssn and
Super_ssn, respectively—because they appear in the same relation and in order to
distinguish their meaning.

Each relational DBMS must have a data definition language (DDL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for this
purpose. We present the SQL DDL in Sections 4.1 and 4.2.
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Figure 3.6
One possible database state for the COMPANY relational database schema.

EMPLOYEE
Fname | Minit | Lname Ssn Bdate Address Sex |Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M |30000 |333445555 5
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M [40000 (888665555 | 5
Alicia J Zelaya | 999887777 | 1968-01-19 |3321 Castle, Spring, TX F {25000 |987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 |291 Berry, Bellaire, TX F 143000 |888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M [38000 |333445555 5
Joyce A English | 4563453453 | 1972-07-31 | 5631 Rice, Houston, TX F |25000 |333445555 5
Ahmad \Y Jabbar | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX | M [25000 (987654321 4
James E Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX M |55000 |NULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation
Research 5 333445555 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headquarters 1 888665555 1981-06-19 5 Bellaire
5 Sugarland
5 Houston
WORKS_ON PROJECT
Essn Pno Hours Pname Pnumber | Plocation Dnum
123456789 1 32.5 ProductX 1 Bellaire 5
123456789 2 75 ProductY Sugarland 5
666884444 3 40.0 ProductZ Houston 5
453453453 1 20.0 Computerization 10 Stafford 4
453453453 2 20.0 Reorganization 20 Houston 1
333445555 2 10.0 Newbenefits 30 Stafford 4
333445555 3 10.0
333445555 10 10.0 DEPENDENT
333445555 20 | 100 Essn Dependent name | Sex | Bdate Relationship
999887777 30 30.0 333445555 Alice F | 1986-04-05 | Daughter
999887777 10 | 100 333445555 | Theodore M | 19831025 | Son
987987987 10 | 350 333445555 | Joy F | 1958-05-03 | Spouse
987987987 30 5.0 987654321 Abner M | 1942-02-28 | Spouse
987654321 30 | 200 123456789 Michael M | 1988-01-04 | Son
987654321 20 15.0 123456789 Alice F 1988-12-30 | Daughter
888665555 20 NULL 123456789 Elizabeth F 1967-05-05 | Spouse
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Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schema. In addition to domain, key, and NOT NULL
constraints, two other types of constraints are considered part of the relational
model: entity integrity and referential integrity.

3.2.4 Integrity, Referential Integrity,
and Foreign Keys

The entity integrity constraint states that no primary key value can be NULL. This
is because the primary key value is used to identify individual tuples in a relation.
Having NULL values for the primary key implies that we cannot identify some
tuples. For example, if two or more tuples had NULL for their primary keys, we may
not be able to distinguish them if we try to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations.
The referential integrity constraint is specified between two relations and is used
to maintain the consistency among tuples in the two relations. Informally, the refer-
ential integrity constraint states that a tuple in one relation that refers to another
relation must refer to an existing tuple in that relation. For example, in Figure 3.6,
the attribute Dno of EMPLOYEE gives the department number for which each
employee works; hence, its value in every EMPLOYEE tuple must match the Dnumber
value of some tuple in the DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity con-
straint between the two relation schemas R, and R,. A set of attributes FK in rela-
tion schema R, is a foreign key of R, that references relation R, if it satisfies the
following rules:

1. The attributes in FK have the same domain(s) as the primary key attributes
PK of R,; the attributes FK are said to reference or refer to the relation R,.

2. A value of FK in a tuple ¢, of the current state r, (R, ) either occurs as a value
of PK for some tuple ¢, in the current state r,(R,) or is NULL. In the former
case, we have t,[FK] = t,[PK], and we say that the tuple ¢, references or
refers to the tuple t,.

In this definition, R, is called the referencing relation and R, is the referenced rela-
tion. If these two conditions hold, a referential integrity constraint from R, to R, is
said to hold. In a database of many relations, there are usually many referential
integrity constraints.

To specify these constraints, first we must have a clear understanding of the mean-
ing or role that each attribute or set of attributes plays in the various relation
schemas of the database. Referential integrity constraints typically arise from the
relationships among the entities represented by the relation schemas. For example,
consider the database shown in Figure 3.6. In the EMPLOYEE relation, the attribute
Dno refers to the department for which an employee works; hence, we designate Dno
to be a foreign key of EMPLOYEE referencing the DEPARTMENT relation. This means
that a value of Dno in any tuple ¢, of the EMPLOYEE relation must match a value of
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the primary key of DEPARTMENT—the Dnumber attribute—in some tuple ¢, of the
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not
belong to a department or will be assigned to a department later. For example, in
Figure 3.6 the tuple for employee John Smith’ references the tuple for the ‘Research’
department, indicating that John Smith” works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute
Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is another
employee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is a
foreign key that references the EMPLOYEE relation itself. In Figure 3.6 the tuple for
employee ‘John Smith’ references the tuple for employee ‘Franklin Wong, indicating
that ‘Franklin Wong’ is the supervisor of John Smith’

We can diagrammatically display referential integrity constraints by drawing a directed
arc from each foreign key to the relation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 3.7 shows the schema in
Figure 3.5 with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema (i.e.,
defined as part of its definition) if we want to enforce these constraints on the data-
base states. Hence, the DDL includes provisions for specifying the various types of
constraints so that the DBMS can automatically enforce them. Most relational
DBMSs support key, entity integrity, and referential integrity constraints. These
constraints are specified as a part of data definition in the DDL.

3.2.5 Other Types of Constraints

The preceding integrity constraints are included in the data definition language
because they occur in most database applications. However, they do not include a
large class of general constraints, sometimes called semantic integrity constraints,
which may have to be specified and enforced on a relational database. Examples of
such constraints are the salary of an employee should not exceed the salary of the
employee’s supervisor and the maximum number of hours an employee can work on all
projects per week is 56. Such constraints can be specified and enforced within the
application programs that update the database, or by using a general-purpose
constraint specification language. Mechanisms called triggers and assertions can
be used. In SQL, CREATE ASSERTION and CREATE TRIGGER statements can be
used for this purpose (see Chapter 5). It is more common to check for these types of
constraints within the application programs than to use constraint specification
languages because the latter are sometimes difficult and complex to use, as we dis-
cuss in Section 26.1.

Another type of constraint is the functional dependency constraint, which establishes
a functional relationship among two sets of attributes X and Y. This constraint spec-
ifies that the value of X determines a unique value of Y in all states of a relation; it is
denoted as a functional dependency X — Y. We use functional depen-dencies and
other types of dependencies in Chapters 15 and 16 as tools to analyze the quality of
relational designs and to “normalize” relations to improve their quality.
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EMPLOYEE

| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno |

AAA* |

DEPARTMENT

| Dname | Dnumber | Mgr_ssn| Mgr_start_date|
A*4

DEPT_LOCATIONS

| Dnumber | Dlocation |
1

PROJECT
| Pname | Pnumber | Plocation | Dnum

A L |
WORKS_ON

|Essn | Pno | Hours |

DEPENDENT Figure 3.7

L schema.

75

Referential integrity constraints displayed
| Essn | Dependent_name | Sex | Bdate | Relationship | on the COMPANY relational database

The types of constraints we discussed so far may be called state constraints because
they define the constraints that a valid state of the database must satisfy. Another type
of constraint, called transition constraints, can be defined to deal with state changes
in the database.!! An example of a transition constraint is: “the salary of an employee
can only increase.” Such constraints are typically enforced by the application pro-
grams or specified using active rules and triggers, as we discuss in Section 26.1.

3.3 Update Operations, Transactions,
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and
updates. The relational algebra operations, which can be used to specify retrievals,
are discussed in detail in Chapter 6. A relational algebra expression forms a new
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database to retrieve information. The user for-
mulates a query that specifies the data of interest, and a new relation is formed by
applying relational operators to retrieve this data. That result relation becomes the

11State constraints are sometimes called static constraints, and transition constraints are sometimes
called dynamic constraints.
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answer to (or result of) the user’s query. Chapter 6 also introduces the language
called relational calculus, which is used to define the new relation declaratively
without giving a specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic operations that can change the states of relations in the data-
base: Insert, Delete, and Update (or Modify). They insert new data, delete old data,
or modify existing data records. Insert is used to insert one or more new tuples in a
relation, Delete is used to delete tuples, and Update (or Modify) is used to change
the values of some attributes in existing tuples. Whenever these operations are
applied, the integrity constraints specified on the relational database schema should
not be violated. In this section we discuss the types of constraints that may be vio-
lated by each of these operations and the types of actions that may be taken if an
operation causes a violation. We use the database shown in Figure 3.6 for examples
and discuss only key constraints, entity integrity constraints, and the referential
integrity constraints shown in Figure 3.7. For each type of operation, we give some
examples and discuss any constraints that each operation may violate.

3.3.1 The Insert Operation

The Insert operation provides a list of attribute values for a new tuple ¢ that is to be
inserted into a relation R. Insert can violate any of the four types of constraints dis-
cussed in the previous section. Domain constraints can be violated if an attribute
value is given that does not appear in the corresponding domain or is not of the
appropriate data type. Key constraints can be violated if a key value in the new tuple
t already exists in another tuple in the relation r(R). Entity integrity can be violated
if any part of the primary key of the new tuple # is NULL. Referential integrity can be
violated if the value of any foreign key in ¢ refers to a tuple that does not exist in the
referenced relation. Here are some examples to illustrate this discussion.

m Operation:
Insert <‘Cecilia; ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX;, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion violates the entity integrity constraint (NULL for the
primary key Ssn), so it is rejected.

m Operation:
Insert <‘Alicia;, T, ‘Zelaya), ‘999887777, °1960-04-05’, ‘6357 Windy Lane, Katy,
TX, F, 28000, ‘987654321, 4> into EMPLOYEE.
Result: This insertion violates the key constraint because another tuple with
the same Ssn value already exists in the EMPLOYEE relation, and so it is
rejected.

m Operation:
Insert <‘Cecilia, ‘F, ‘Kolonsky’, ‘677678989, ‘1960-04-05’, ‘6357 Windswept,
Katy, TX), E, 28000, ‘987654321, 7> into EMPLOYEE.
Result: This insertion violates the referential integrity constraint specified on
Dno in EMPLOYEE because no corresponding referenced tuple exists in
DEPARTMENT with Dnumber = 7.
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m Operation:
Insert <‘Cecilia;, ‘F, ‘Kolonsky’, ‘677678989, ‘1960-04-05’, ‘6357 Windy Lane,
Katy, TX, F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the
insertion. In this case, it would be useful if the DBMS could provide a reason to
the user as to why the insertion was rejected. Another option is to attempt to correct
the reason for rejecting the insertion, but this is typically not used for violations
caused by Insert; rather, it is used more often in correcting violations for Delete and
Update. In the first operation, the DBMS could ask the user to provide a value for
Ssn, and could then accept the insertion if a valid Ssn value is provided. In opera-
tion 3, the DBMS could either ask the user to change the value of Dno to some valid
value (or set it to NULL), or it could ask the user to insert a DEPARTMENT tuple with
Dnumber = 7 and could accept the original insertion only after such an operation
was accepted. Notice that in the latter case the insertion violation can cascade back
to the EMPLOYEE relation if the user attempts to insert a tuple for department 7
with a value for Mgr_ssn that does not exist in the EMPLOYEE relation.

3.3.2 The Delete Operation

The Delete operation can violate only referential integrity. This occurs if the tuple
being deleted is referenced by foreign keys from other tuples in the database. To
specify deletion, a condition on the attributes of the relation selects the tuple (or
tuples) to be deleted. Here are some examples.

® Operation:
Delete the WORKS_ON tuple with Essn = ‘999887777 and Pno = 10.
Result: This deletion is acceptable and deletes exactly one tuple.

m Operation:
Delete the EMPLOYEE tuple with Ssn = 999887777
Result: This deletion is not acceptable, because there are tuples in
WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is
deleted, referential integrity violations will result.

® Operation:
Delete the EMPLOYEE tuple with Ssn = 333445555
Result: This deletion will result in even worse referential integrity violations,
because the tuple involved is referenced by tuples from the EMPLOYEE,
DEPARTMENT, WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a violation. The first
option, called restrict, is to reject the deletion. The second option, called cascade, is
to attempt to cascade (or propagate) the deletion by deleting tuples that reference the
tuple that is being deleted. For example, in operation 2, the DBMS could automati-
cally delete the offending tuples from WORKS_ON with Essn = ‘999887777’. A third
option, called set null or set default, is to modify the referencing attribute values that
cause the violation; each such value is either set to NULL or changed to reference
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another default valid tuple. Notice that if a referencing attribute that causes a viola-
tion is part of the primary key, it cannot be set to NULL; otherwise, it would violate
entity integrity.

Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from
WORKS_ON and DEPENDENT with Essn = 333445555’. Tuples in EMPLOYEE with
Super_ssn = 333445555’ and the tuple in DEPARTMENT with Mgr_ssn = 333445555’
can have their Super_ssn and Mgr_ssn values changed to other valid values or to
NULL. Although it may make sense to delete automatically the WORKS_ON and
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to
delete other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS
will allow the database designer to specify which of the options applies in case of a
violation of the constraint. We discuss how to specify these options in the SQL DDL
in Chapter 4.

3.3.3 The Update Operation

The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modified.
Here are some examples.

® Operation:
Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000.
Result: Acceptable.

m Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = 999887777 to 1.
Result: Acceptable.

® Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = 999887777 to 7.
Result: Unacceptable, because it violates referential integrity.

m Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777 to
987654321
Result: Unacceptable, because it violates primary key constraint by repeating
a value that already exists as a primary key in another tuple; it violates refer-
ential integrity constraints because there are other relations that refer to the
existing value of Ssn.

Updating an attribute that is neither part of a primary key nor of a foreign key usually
causes no problems; the DBMS need only check to confirm that the new value is of
the correct data type and domain. Modifying a primary key value is similar to delet-
ing one tuple and inserting another in its place because we use the primary key to
identify tuples. Hence, the issues discussed earlier in both Sections 3.3.1 (Insert) and
3.3.2 (Delete) come into play. If a foreign key attribute is modified, the DBMS must
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make sure that the new value refers to an existing tuple in the referenced relation (or
is set to NULL). Similar options exist to deal with referential integrity violations
caused by Update as those options discussed for the Delete operation. In fact, when
a referential integrity constraint is specified in the DDL, the DBMS will allow the
user to choose separate options to deal with a violation caused by Delete and a vio-
lation caused by Update (see Section 4.2).

3.3.4 The Transaction Concept

A database application program running against a relational database typically exe-
cutes one or more fransactions. A transaction is an executing program that includes
some database operations, such as reading from the database, or applying inser-
tions, deletions, or updates to the database. At the end of the transaction, it must
leave the database in a valid or consistent state that satisfies all the constraints spec-
ified on the database schema. A single transaction may involve any number of
retrieval operations (to be discussed as part of relational algebra and calculus in
Chapter 6, and as a part of the language SQL in Chapters 4 and 5), and any number
of update operations. These retrievals and updates will together form an atomic
unit of work against the database. For example, a transaction to apply a bank with-
drawal will typically read the user account record, check if there is a sufficient bal-
ance, and then update the record by the withdrawal amount.

A large number of commercial applications running against relational databases in
online transaction processing (OLTP) systems are executing transactions at rates
that reach several hundred per second. Transaction processing concepts, concurrent
execution of transactions, and recovery from failures will be discussed in Chapters
21 to 23.

3.4 Summary

In this chapter we presented the modeling concepts, data structures, and constraints
provided by the relational model of data. We started by introducing the concepts of
domains, attributes, and tuples. Then, we defined a relation schema as a list of
attributes that describe the structure of a relation. A relation, or relation state, is a
set of tuples that conforms to the schema.

Several characteristics differentiate relations from ordinary tables or files. The first
is that a relation is not sensitive to the ordering of tuples. The second involves the
ordering of attributes in a relation schema and the corresponding ordering of values
within a tuple. We gave an alternative definition of relation that does not require
these two orderings, but we continued to use the first definition, which requires
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-
mation. We emphasized that NULL values should be avoided as much as possible.

We classified database constraints into inherent model-based constraints, explicit
schema-based constraints, and application-based constraints, otherwise known as
semantic constraints or business rules. Then, we discussed the schema constraints
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pertaining to the relational model, starting with domain constraints, then key con-
straints, including the concepts of superkey, candidate key, and primary key, and the
NOT NULL constraint on attributes. We defined relational databases and relational
database schemas. Additional relational constraints include the entity integrity con-
straint, which prohibits primary key attributes from being NULL. We described the
interrelation referential integrity constraint, which is used to maintain consistency
of references among tuples from different relations.

The modification operations on the relational model are Insert, Delete, and Update.
Each operation may violate certain types of constraints (refer to Section 3.3).
Whenever an operation is applied, the database state after the operation is executed
must be checked to ensure that no constraints have been violated. Finally, we intro-
duced the concept of a transaction, which is important in relational DBMSs because
it allows the grouping of several database operations into a single atomic action on
the database.

Review Questions

3.1. Define the following terms as they apply to the relational model of data:
domain, attribute, n-tuple, relation schema, relation state, degree of a relation,
relational database schema, and relational database state.

3.2. Why are tuples in a relation not ordered?
3.3. Why are duplicate tuples not allowed in a relation?
3.4. What is the difference between a key and a superkey?

3.5. Why do we designate one of the candidate keys of a relation to be the pri-
mary key?

3.6. Discuss the characteristics of relations that make them different from ordi-
nary tables and files.

3.7. Discuss the various reasons that lead to the occurrence of NULL values in
relations.

3.8. Discuss the entity integrity and referential integrity constraints. Why is each
considered important?

3.9. Define foreign key. What is this concept used for?

3.10. What is a transaction? How does it differ from an Update operation?

Exercises

3.11. Suppose that each of the following Update operations is applied directly to
the database state shown in Figure 3.6. Discuss all integrity constraints vio-
lated by each operation, if any, and the different ways of enforcing these con-
straints.



3.12.

3.13.

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’ ‘1972-06-21’, 2365 Newcastle Rd,
Bellaire, TX, M, 58000, ‘888665555, 1> into EMPLOYEE.

. Insert <‘ProductA, 4, ‘Bellaire’, 2> into PROJECT.

. Insert <‘Production’ 4, ‘943775543’ 2007-10-01"> into DEPARTMENT.

. Insert <‘677678989’, NULL, ‘40.0’> into WORKS_ON.

. Insert <453453453’, ‘John, ‘M, 1990-12-12’, ‘spouse’> into DEPENDENT.
. Delete the WORKS_ON tuples with Essn = 333445555’

. Delete the EMPLOYEE tuple with Ssn = ‘987654321’

. Delete the PROJECT tuple with Pname = ‘ProductX.

i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with
Dnumber = 5 to ‘123456789 and 2007-10-01’, respectively.

j- Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn =
‘999887777 to ‘943775543’

k. Modify the Hours attribute of the WORKS_ON tuple with Essn =
999887777 and Pno = 10 to ‘5.0.

-~ ® O O U
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Consider the AIRLINE relational database schema shown in Figure 3.8, which
describes a database for airline flight information. Each FLIGHT is identified
by a Flight_number, and consists of one or more FLIGHT_LEGs with
Leg_numbers 1, 2, 3, and so on. Each FLIGHT_LEG has scheduled arrival and
departure times, airports, and one or more LEG_INSTANCEs—one for each
Date on which the flight travels. FAREs are kept for each FLIGHT. For each
FLIGHT_LEG instance, SEAT_RESERVATIONSs are kept, as are the AIRPLANE
used on the leg and the actual arrival and departure times and airports. An
AIRPLANE is identified by an Airplane_id and is of a particular
AIRPLANE_TYPE. CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTSs at
which they can land. An AIRPORT is identified by an Airport_code. Consider
an update for the AIRLINE database to enter a reservation on a particular
flight or flight leg on a given date.

a. Give the operations for this update.
b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential
integrity constraints, and which are not?

d. Specify all the referential integrity constraints that hold on the schema
shown in Figure 3.8.

Consider the relation CLASS(Course#, Univ_Section#, Instructor_name,
Semester, Building_code, Room#, Time_period, Weekdays, Credit_hours). This
represents classes taught in a university, with unique Univ_section#s. Identify
what you think should be various candidate keys, and write in your own
words the conditions or assumptions under which each candidate key would
be valid.

Exercises
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AIRPORT
[ Airport_code | Name [ City | State |

FLIGHT
| Flight_number | Airline | Weekdays |

FLIGHT_LEG
’ Flight_number ‘ Leg_number ‘ Departure_airport_code ‘ Scheduled_departure_time
Arrival_airport_code ‘ Scheduled_arrival_time

LEG_INSTANCE

Flight_number Leg_number ‘ Date ‘ Number_of_available_seats ‘ Airplane_id
Departure_airport_code ‘ Departure_time ‘ Arrival_airport_code ‘ Arrival_time

FARE

’ Flight_number ‘ Fare_code ‘Amount ‘ Restrictions ‘

AIRPLANE_TYPE

’ Airplane_type_name‘ Max_seats ‘ Company ‘

CAN_LAND
’ Airplane_type_name ‘ Airport_code ‘

AIRPLANE

’Airplane_id ‘ Total_number_of_seats ‘ Airplane_type ‘

SEAT_RESERVATION
’ Flight_number ‘ Leg_number ‘ Date ‘ Seat_number ‘ Customer_name Customer_phone

Figure 3.8
The AIRLINE relational database schema.

3.14. Consider the following six relations for an order-processing database appli-
cation in a company:

CUSTOMER(Cust#, Cname, City)
ORDER(Order#, Odate, Cust#, Ord_amt)
ORDER_ITEM(Order#, ltem#, Qty)




3.15.

3.16.

3.18.

ITEM(ltem#, Unit_price)
SHIPMENT(Order#, Warehouse#, Ship_date)
WAREHOUSE(Warehouse#, City)

Here, Ord_amt refers to total dollar amount of an order; Odate is the date the
order was placed; and Ship_date is the date an order (or part of an order) is
shipped from the warehouse. Assume that an order can be shipped from sev-
eral warehouses. Specify the foreign keys for this schema, stating any
assumptions you make. What other constraints can you think of for this
database?

Consider the following relations for a database that keeps track of business
trips of salespersons in a sales office:

SALESPERSON(Ssn, Name, Start_year, Dept_no)
TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)
EXPENSE(Trip_id, Account#, Amount)

A trip can be charged to one or more accounts. Specify the foreign keys for
this schema, stating any assumptions you make.

Consider the following relations for a database that keeps track of student
enrollment in courses and the books adopted for each course:

STUDENT(Ssn, Name, Major, Bdate)
COURSE(Course#, Cname, Dept)

ENROLL(Ssn, Course#, Quarter, Grade)
BOOK_ADOPTION(Course#, Quarter, Book_isbn)
TEXT(Book isbn, Book_title, Publisher, Author)

Specify the foreign keys for this schema, stating any assumptions you make.

. Consider the following relations for a database that keeps track of automo-

bile sales in a car dealership (OPTION refers to some optional equipment
installed on an automobile):

CAR(Serial no, Model, Manufacturer, Price)
OPTION(Serial_no, Option_name, Price)
SALE(Salesperson _id, Serial no, Date, Sale_price)
SALESPERSON(Salesperson_id, Name, Phone)

First, specify the foreign keys for this schema, stating any assumptions you
make. Next, populate the relations with a few sample tuples, and then give an
example of an insertion in the SALE and SALESPERSON relations that
violates the referential integrity constraints and of another insertion that
does not.

Database design often involves decisions about the storage of attributes. For
example, a Social Security number can be stored as one attribute or split into
three attributes (one for each of the three hyphen-delineated groups of
numbers in a Social Security number—XXX-XX-XXXX). However, Social
Security numbers are usually represented as just one attribute. The decision

Exercises
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Name

is based on how the database will be used. This exercise asks you to think
about specific situations where dividing the SSN is useful.

. Consider a STUDENT relation in a UNIVERSITY database with the following

attributes (Name, Ssn, Local_phone, Address, Cell_phone, Age, Gpa). Note that
the cell phone may be from a different city and state (or province) from the
local phone. A possible tuple of the relation is shown below:

Ssn Local_phone  Address Cell_phone Age Gpa

George Shaw 123-45-6789  555-1234 123 Main St., 555-4321 19 3.75
William Edwards Anytown, CA 94539

3.20.

a. Identify the critical missing information from the Local_phone and
Cell_phone attributes. (Hint: How do you call someone who lives in a dif-
ferent state or province?)

b. Would you store this additional information in the Local_phone and
Cell_phone attributes or add new attributes to the schema for STUDENT?

c. Consider the Name attribute. What are the advantages and disadvantages
of splitting this field from one attribute into three attributes (first name,
middle name, and last name)?

d. What general guideline would you recommend for deciding when to store
information in a single attribute and when to split the information?

e. Suppose the student can have between 0 and 5 phones. Suggest two differ-
ent designs that allow this type of information.

Recent changes in privacy laws have disallowed organizations from using
Social Security numbers to identify individuals unless certain restrictions are
satisfied. As a result, most U.S. universities cannot use SSNs as primary keys
(except for financial data). In practice, Student_id, a unique identifier
assigned to every student, is likely to be used as the primary key rather than
SSN since Student_id can be used throughout the system.

a. Some database designers are reluctant to use generated keys (also known
as surrogate keys) for primary keys (such as Student_id) because they are
artificial. Can you propose any natural choices of keys that can be used to
identify the student record in a UNIVERSITY database?

b. Suppose that you are able to guarantee uniqueness of a natural key that
includes last name. Are you guaranteed that the last name will not change
during the lifetime of the database? If last name can change, what solu-
tions can you propose for creating a primary key that still includes last
name but remains unique?

c. What are the advantages and disadvantages of using generated (surro-
gate) keys?
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chapter Z-L

Basic SQL

he SQL language may be considered one of the
major reasons for the commercial success of rela-
tional databases. Because it became a standard for relational databases, users were
less concerned about migrating their database applications from other types of
database systems—for example, network or hierarchical systems—to relational sys-
tems. This is because even if the users became dissatisfied with the particular rela-
tional DBMS product they were using, converting to another relational DBMS
product was not expected to be too expensive and time-consuming because both
systems followed the same language standards. In practice, of course, there are many
differences between various commercial relational DBMS packages. However, if the
user is diligent in using only those features that are part of the standard, and if both
relational systems faithfully support the standard, then conversion between the two
systems should be much simplified. Another advantage of having such a standard is
that users may write statements in a database application program that can access
data stored in two or more relational DBMSs without having to change the database
sublanguage (SQL) if both relational DBMSs support standard SQL.

This chapter presents the main features of the SQL standard for commercial rela-
tional DBMSs, whereas Chapter 3 presented the most important concepts underly-
ing the formal relational data model. In Chapter 6 (Sections 6.1 through 6.5) we
shall discuss the relational algebra operations, which are very important for under-
standing the types of requests that may be specified on a relational database. They
are also important for query processing and optimization in a relational DBMS, as
we shall see in Chapter 19. However, the relational algebra operations are consid-
ered to be too technical for most commercial DBMS users because a query in rela-
tional algebra is written as a sequence of operations that, when executed, produces
the required result. Hence, the user must specify how—that is, in what order—to
execute the query operations. On the other hand, the SQL language provides a
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higher-level declarative language interface, so the user only specifies what the result
is to be, leaving the actual optimization and decisions on how to execute the query
to the DBMS. Although SQL includes some features from relational algebra, it is
based to a greater extent on the tuple relational calculus, which we describe in
Section 6.6. However, the SQL syntax is more user-friendly than either of the two
formal languages.

The name SQL is presently expanded as Structured Query Language. Originally,
SQL was called SEQUEL (Structured English QUEry Language) and was designed
and implemented at IBM Research as the interface for an experimental relational
database system called SYSTEM R. SQL is now the standard language for commer-
cial relational DBMSs. A joint effort by the American National Standards Institute
(ANSI) and the International Standards Organization (ISO) has led to a standard
version of SQL (ANSI 1986), called SQL-86 or SQLI. A revised and much expanded
standard called SQL-92 (also referred to as SQL2) was subsequently developed. The
next standard that is well-recognized is SQL:1999, which started out as SQL3. Two
later updates to the standard are SQL:2003 and SQL:2006, which added XML fea-
tures (see Chapter 12) among other updates to the language. Another update in
2008 incorporated more object database features in SQL (see Chapter 11). We will
try to cover the latest version of SQL as much as possible.

SQL is a comprehensive database language: It has statements for data definitions,
queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-
ties for defining views on the database, for specifying security and authorization, for
defining integrity constraints, and for specifying transaction controls. It also has
rules for embedding SQL statements into a general-purpose programming language
such as Java, COBOL, or C/C++.!

The later SQL standards (starting with SQL:1999) are divided into a core specifica-
tion plus specialized extensions. The core is supposed to be implemented by all
RDBMS vendors that are SQL compliant. The extensions can be implemented as
optional modules to be purchased independently for specific database applications
such as data mining, spatial data, temporal data, data warehousing, online analytical
processing (OLAP), multimedia data, and so on.

Because SQL is very important (and quite large), we devote two chapters to its fea-
tures. In this chapter, Section 4.1 describes the SQL DDL commands for creating
schemas and tables, and gives an overview of the basic data types in SQL. Section 4.2
presents how basic constraints such as key and referential integrity are specified.
Section 4.3 describes the basic SQL constructs for specifying retrieval queries, and
Section 4.4 describes the SQL commands for insertion, deletion, and data updates.

In Chapter 5, we will describe more complex SQL retrieval queries, as well as the
ALTER commands for changing the schema. We will also describe the CREATE
ASSERTION statement, which allows the specification of more general constraints
on the database. We also introduce the concept of triggers, which is presented in

10riginally, SQL had statements for creating and dropping indexes on the files that represent relations,
but these have been dropped from the SOL standard for some time.
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more detail in Chapter 26 and we will describe the SQL facility for defining views on
the database in Chapter 5. Views are also called virtual or derived tables because they
present the user with what appear to be tables; however, the information in those
tables is derived from previously defined tables.

Section 4.5 lists some SQL features that are presented in other chapters of the book;
these include transaction control in Chapter 21, security/authorization in Chapter
24, active databases (triggers) in Chapter 26, object-oriented features in Chapter 11,
and online analytical processing (OLAP) features in Chapter 29. Section 4.6 sum-
marizes the chapter. Chapters 13 and 14 discuss the various database programming
techniques for programming with SQL.

4.1 SQL Data Definition and Data Types

SQL uses the terms table, row, and column for the formal relational model terms
relation, tuple, and attribute, respectively. We will use the corresponding terms inter-
changeably. The main SQL command for data definition is the CREATE statement,
which can be used to create schemas, tables (relations), and domains (as well as
other constructs such as views, assertions, and triggers). Before we describe the rel-
evant CREATE statements, we discuss schema and catalog concepts in Section 4.1.1
to place our discussion in perspective. Section 4.1.2 describes how tables are created,
and Section 4.1.3 describes the most important data types available for attribute
specification. Because the SQL specification is very large, we give a description of
the most important features. Further details can be found in the various SQL stan-
dards documents (see end-of-chapter bibliographic notes).

4.1.1 Schema and Catalog Concepts in SQL

Early versions of SQL did not include the concept of a relational database schema; all
tables (relations) were considered part of the same schema. The concept of an SQL
schema was incorporated starting with SQL2 in order to group together tables and
other constructs that belong to the same database application. An SQL schema is
identified by a schema name, and includes an authorization identifier to indicate
the user or account who owns the schema, as well as descriptors for each element in
the schema. Schema elements include tables, constraints, views, domains, and other
constructs (such as authorization grants) that describe the schema. A schema is cre-
ated via the CREATE SCHEMA statement, which can include all the schema elements’
definitions. Alternatively, the schema can be assigned a name and authorization
identifier, and the elements can be defined later. For example, the following state-
ment creates a schema called COMPANY, owned by the user with authorization iden-
tifier Jsmith’. Note that each statement in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The
privilege to create schemas, tables, and other constructs must be explicitly granted
to the relevant user accounts by the system administrator or DBA.
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In addition to the concept of a schema, SQL uses the concept of a catalog—a named
collection of schemas in an SQL environment. An SQL environment is basically an
installation of an SQL-compliant RDBMS on a computer system.” A catalog always
contains a special schema called INFORMATION_SCHEMA, which provides informa-
tion on all the schemas in the catalog and all the element descriptors in these
schemas. Integrity constraints such as referential integrity can be defined between
relations only if they exist in schemas within the same catalog. Schemas within the
same catalog can also share certain elements, such as domain definitions.

4.1.2 The CREATE TABLE Command in SOL

The CREATE TABLE command is used to specify a new relation by giving it a name
and specifying its attributes and initial constraints. The attributes are specified first,
and each attribute is given a name, a data type to specify its domain of values, and
any attribute constraints, such as NOT NULL. The key, entity integrity, and referen-
tial integrity constraints can be specified within the CREATE TABLE statement after
the attributes are declared, or they can be added later using the ALTER TABLE com-
mand (see Chapter 5). Figure 4.1 shows sample data definition statements in SQL
for the COMPANY relational database schema shown in Figure 3.7.

Typically, the SQL schema in which the relations are declared is implicitly specified
in the environment in which the CREATE TABLE statements are executed.
Alternatively, we can explicitly attach the schema name to the relation name, sepa-
rated by a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE ...
rather than
CREATE TABLE EMPLOYEE ...

as in Figure 4.1, we can explicitly (rather than implicitly) make the EMPLOYEE table
part of the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables (or
base relations); this means that the relation and its tuples are actually created and
stored as a file by the DBMS. Base relations are distinguished from virtual relations,
created through the CREATE VIEW statement (see Chapter 5), which may or may
not correspond to an actual physical file. In SQL, the attributes in a base table are
considered to be ordered in the sequence in which they are specified in the CREATE
TABLE statement. However, rows (tuples) are not considered to be ordered within a
relation.

It is important to note that in Figure 4.1, there are some foreign keys that may cause
errors because they are specified either via circular references or because they refer
to a table that has not yet been created. For example, the foreign key Super_ssn in
the EMPLOYEE table is a circular reference because it refers to the table itself. The
foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table, which has

2SQL also includes the concept of a cluster of catalogs within an environment.



PRIMARY KEY (Ssn),

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),

FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE DEPARTMENT

( Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(9) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) );
CREATE TABLE DEPT_LOCATIONS
( Dnumber INT
Dlocation VARCHAR(15)
PRIMARY KEY (Dnumber, Dlocation),

NOT NULL,
NOT NULL,

FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );

CREATE TABLE PROJECT

( Pname VARCHAR(15) NOT NULL,
Pnumber INT NOT NULL,
Plocation VARCHAR(15),

Dnum INT NOT NULL,

PRIMARY KEY (Pnumber),

UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE WORKS_ON

( Essn CHAR(9) NOT NULL,
Pno INT NOT NULL,
Hours DECIMAL(3,1) NOT NULL,

PRIMARY KEY (Essn, Pno),

FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),

FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber) );
CREATE TABLE DEPENDENT

( Essn CHAR(9) NOT NULL,
Dependent_name VARCHAR(15) NOT NULL,
Sex CHAR,

Bdate DATE,
Relationship VARCHAR(8),

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) );

4.1 SQL Data Definition and Data Types 91
CREATE TABLE EMPLOYEE Figure 4.1

( Fname VARCHAR(15) NOT NULL, SQL CREATE TABLE
Minit CHAR, data definition state-
Lname VARCHAR(1 5) NOT NULL, ments for deﬂning the
Ssn CHAR(9) NOT NULL, COMPANY schema
Bdate DATE, from Figure 3.7.
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,
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not been created yet. To deal with this type of problem, these constraints can be left
out of the initial CREATE TABLE statement, and then added later using the ALTER
TABLE statement (see Chapter 5). We displayed all the foreign keys in Figure 4.1 to
show the complete COMPANY schema in one place.

4.1.3 Attribute Data Types and Domains in SQL

The basic data types available for attributes include numeric, character string, bit
string, Boolean, date, and time.

® Numeric data types include integer numbers of various sizes (INTEGER or
INT, and SMALLINT) and floating-point (real) numbers of various precision
(FLOAT or REAL, and DOUBLE PRECISION). Formatted numbers can be
declared by using DECIMAL(4,j)—or DEC(4,j) or NUMERIC(i,j)—where i, the
precision, is the total number of decimal digits and j, the scale, is the number
of digits after the decimal point. The default for scale is zero, and the default
for precision is implementation-defined.

B Character-string data types are either fixed length—CHAR(n) or
CHARACTER(#), where n is the number of characters—or varying length—
VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(#), where n is
the maximum number of characters. When specifying a literal string value, it
is placed between single quotation marks (apostrophes), and it is case sensi-
tive (a distinction is made between uppercase and lowercase).? For fixed-
length strings, a shorter string is padded with blank characters to the right.
For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is
padded with five blank characters to become ‘Smith ’ if needed. Padded
blanks are generally ignored when strings are compared. For comparison
purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string str] appears before another string str2 in alphabetic order,
then strl is considered to be less than str2.* There is also a concatenation
operator denoted by || (double vertical bar) that can concatenate two strings
in SQL. For example, ‘ab¢’ || XYZ’ results in a single string ‘abcXYZ’. Another
variable-length string data type called CHARACTER LARGE OBJECT or
CLOB is also available to specify columns that have large text values, such as
documents. The CLOB maximum length can be specified in kilobytes (K),
megabytes (M), or gigabytes (G). For example, CLOB(20M) specifies a max-
imum length of 20 megabytes.

B Bit-string data types are either of fixed length n—BIT(#)—or varying
length—BIT VARYING(n), where 7 is the maximum number of bits. The
default for n, the length of a character string or bit string, is 1. Literal bit
strings are placed between single quotes but preceded by a B to distinguish

3This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-
sitive, meaning that SOL treats uppercase and lowercase letters as equivalent in keywords.

4For nonalphabetic characters, there is a defined order.
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them from character strings; for example, B‘10101’> Another variable-length
bitstring data type called BINARY LARGE OBJECT or BLOB is also available
to specify columns that have large binary values, such as images. As for
CLOB, the maximum length of a BLOB can be specified in kilobits (K),
megabits (M), or gigabits (G). For example, BLOB(30G) specifies a maxi-
mum length of 30 gigabits.

B A Boolean data type has the traditional values of TRUE or FALSE. In SQL,
because of the presence of NULL values, a three-valued logic is used, so a
third possible value for a Boolean data type is UNKNOWN. We discuss the
need for UNKNOWN and the three-valued logic in Chapter 5.

® The DATE data type has ten positions, and its components are YEAR,
MONTH, and DAY in the form YYYY-MM-DD. The TIME data type has at
least eight positions, with the components HOUR, MINUTE, and SECOND in
the form HH:MM:SS. Only valid dates and times should be allowed by the
SQL implementation. This implies that months should be between 1 and 12
and dates must be between 1 and 31; furthermore, a date should be a valid
date for the corresponding month. The < (less than) comparison can be used
with dates or times—an earlier date is considered to be smaller than a later
date, and similarly with time. Literal values are represented by single-quoted
strings preceded by the keyword DATE or TIME; for example, DATE “2008-09-
27 or TIME ‘09:12:47’. In addition, a data type TIME(7), where i is called time
fractional seconds precision, specifies i + 1 additional positions for TIME—one
position for an additional period (.) separator character, and i positions for
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type
includes an additional six positions for specifying the displacement from the
standard universal time zone, which is in the range +13:00 to —12:59 in units
of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the
local time zone for the SQL session.

Some additional data types are discussed below. The list of types discussed here is
not exhaustive; different implementations have added more data types to SQL.

B A timestamp data type (TIMESTAMP) includes the DATE and TIME fields,
plus a minimum of six positions for decimal fractions of seconds and an
optional WITH TIME ZONE qualifier. Literal values are represented by single-
quoted strings preceded by the keyword TIMESTAMP, with a blank space
between data and time; for example, TIMESTAMP 2008-09-27
09:12:47.648302’.

B Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL
data type. This specifies an interval—a relative value that can be used to
increment or decrement an absolute value of a date, time, or timestamp.
Intervals are qualified to be either YEAR/MONTH intervals or DAY/TIME
intervals.

5Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literal
string is preceded by X and each hexadecimal character represents 4 bits.
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The format of DATE, TIME, and TIMESTAMP can be considered as a special type of
string. Hence, they can generally be used in string comparisons by being cast (or
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 4.1; alter-
natively, a domain can be declared, and the domain name used with the attribute
specification. This makes it easier to change the data type for a domain that is used
by numerous attributes in a schema, and improves schema readability. For example,
we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 4.1 for the attributes Ssn and
Super_ssn of EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn
of DEPENDENT. A domain can also have an optional default specification via a
DEFAULT clause, as we discuss later for attributes. Notice that domains may not be
available in some implementations of SQL.

4.2 Specifying Constraints in SQL

This section describes the basic constraints that can be specified in SQL as part of
table creation. These include key and referential integrity constraints, restrictions
on attribute domains and NULLs, and constraints on individual tuples within a rela-
tion. We discuss the specification of more general constraints, called assertions, in
Chapter 5.

4.21 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLSs as attribute values, a constraint NOT NULL may be speci-
fied if NULL is not permitted for a particular attribute. This is always implicitly spec-
ified for the attributes that are part of the primary key of each relation, but it can be
specified for any other attributes whose values are required not to be NULL, as
shown in Figure 4.1.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any
new tuple if an explicit value is not provided for that attribute. Figure 4.2 illustrates
an example of specifying a default manager for a new department and a default
department for a new employee. If no default clause is specified, the default default
value is NULL for attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK
clause following an attribute or domain definition.® For example, suppose that
department numbers are restricted to integer numbers between 1 and 20; then, we
can change the attribute declaration of Dnumber in the DEPARTMENT table (see
Figure 4.1) to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

6The CHECK clause can also be used for other purposes, as we shall see.
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CREATE TABLE EMPLOYEE
€.
Dno INT NOT NULL DEFAULT 1,
CONSTRAINT EMPPK
PRIMARY KEY (Ssn),
CONSTRAINT EMPSUPERFK
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET NULL ON UPDATE CASCADE,
CONSTRAINT EMPDEPTFK
FOREIGN KEY(Dno) REFERENCES DEPARTMENT (Dnumber)
ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
[P
Mgr_ssn  CHAR(9) NOT NULL DEFAULT ‘888665555,
CONSTRAINT DEPTPK
PRIMARY KEY (Dnumber),
CONSTRAINT DEPTSK
UNIQUE (Dname),
CONSTRAINT DEPTMGRFK
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) Figure 4.2
ON DELETE SET DEFAULT ON UPDATE CASCADE); Example illustrating
CREATE TABLE DEPT_LOCATIONS how default attribute
(..., values and referential
PRIMARY KEY (Dnumber, Dlocation), integrity triggered
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) actions are specified
ON DELETE CASCADE ON UPDATE CASCADE); in SQL.

The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-
ment. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER
CHECK (D_NUM > 0 AND D_NUM < 21);

We can then use the created domain D_NUM as the attribute type for all attributes
that refer to department numbers in Figure 4.1, such as Dnumber of DEPARTMENT,
Dnum of PROJECT, Dno of EMPLOYEE, and so on.

4.2.2 Specifying Key and Referential Integrity Constraints

Because keys and referential integrity constraints are very important, there are spe-
cial clauses within the CREATE TABLE statement to specify them. Some examples to
illustrate the specification of keys and referential integrity are shown in Figure 4.1.7
The PRIMARY KEY clause specifies one or more attributes that make up the primary
key of a relation. If a primary key has a single attribute, the clause can follow the
attribute directly. For example, the primary key of DEPARTMENT can be specified as
follows (instead of the way it is specified in Figure 4.1):

Dnumber INT PRIMARY KEY;

"Key and referential integrity constraints were not included in early versions of SQL. In some earlier
implementations, keys were specified implicitly at the internal level via the CREATE INDEX command.
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The UNIQUE clause specifies alternate (secondary) keys, as illustrated in the
DEPARTMENT and PROJECT table declarations in Figure 4.1. The UNIQUE clause
can also be specified directly for a secondary key if the secondary key is a single
attribute, as in the following example:

Dname VARCHAR(15) UNIQUE;

Referential integrity is specified via the FOREIGN KEY clause, as shown in Figure
4.1. As we discussed in Section 3.2.4, a referential integrity constraint can be vio-
lated when tuples are inserted or deleted, or when a foreign key or primary key
attribute value is modified. The default action that SQL takes for an integrity viola-
tion is to reject the update operation that will cause a violation, which is known as
the RESTRICT option. However, the schema designer can specify an alternative
action to be taken by attaching a referential triggered action clause to any foreign
key constraint. The options include SET NULL, CASCADE, and SET DEFAULT. An
option must be qualified with either ON DELETE or ON UPDATE. We illustrate this
with the examples shown in Figure 4.2. Here, the database designer chooses ON
DELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of
EMPLOYEE. This means that if the tuple for a supervising employee is deleted, the
value of Super_ssn is automatically set to NULL for all employee tuples that were ref-
erencing the deleted employee tuple. On the other hand, if the Ssn value for a super-
vising employee is updated (say, because it was entered incorrectly), the new value is
cascaded to Super_ssn for all employee tuples referencing the updated employee
tuple.®

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same
for both ON DELETE and ON UPDATE: The value of the affected referencing attrib-
utes is changed to NULL for SET NULL and to the specified default value of the refer-
encing attribute for SET DEFAULT. The action for CASCADE ON DELETE is to delete
all the referencing tuples, whereas the action for CASCADE ON UPDATE is to change
the value of the referencing foreign key attribute(s) to the updated (new) primary
key value for all the referencing tuples. It is the responsibility of the database
designer to choose the appropriate action and to specify it in the database schema.
As a general rule, the CASCADE option is suitable for “relationship” relations (see
Section 9.1), such as WORKS_ON; for relations that represent multivalued attrib-
utes, such as DEPT_LOCATIONS; and for relations that represent weak entity types,
such as DEPENDENT.

4.2.3 Giving Names to Constraints

Figure 4.2 also illustrates how a constraint may be given a constraint name, follow-
ing the keyword CONSTRAINT. The names of all constraints within a particular
schema must be unique. A constraint name is used to identify a particular con-

8Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence may
have to be added later as a named constraint using the ALTER TABLE statement as we discussed at the
end of Section 4.1.2.
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straint in case the constraint must be dropped later and replaced with another con-
straint, as we discuss in Chapter 5. Giving names to constraints is optional.

4.2.4 Specifying Constraints on Tuples Using CHECK

In addition to key and referential integrity constraints, which are specified by spe-
cial keywords, other table constraints can be specified through additional CHECK
clauses at the end of a CREATE TABLE statement. These can be called tuple-based
constraints because they apply to each tuple individually and are checked whenever
a tuple is inserted or modified. For example, suppose that the DEPARTMENT table in
Figure 4.1 had an additional attribute Dept_create_date, which stores the date when
the department was created. Then we could add the following CHECK clause at the
end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a
manager’s start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

The CHECK clause can also be used to specify more general constraints using the
CREATE ASSERTION statement of SQL. We discuss this in Chapter 5 because it
requires the full power of queries, which are discussed in Sections 4.3 and 5.1.

4.3 Basic Retrieval Queries in SQL

SQL has one basic statement for retrieving information from a database: the
SELECT statement. The SELECT statement is not the same as the SELECT operation
of relational algebra, which we discuss in Chapter 6. There are many options and
flavors to the SELECT statement in SQL, so we will introduce its features gradually.
We will use sample queries specified on the schema of Figure 3.5 and will refer to
the sample database state shown in Figure 3.6 to show the results of some of the
sample queries. In this section, we present the features of SQL for simple retrieval
queries. Features of SQL for specifying more complex retrieval queries are presented
in Section 5.1.

Before proceeding, we must point out an important distinction between SQL and the
formal relational model discussed in Chapter 3: SQL allows a table (relation) to
have two or more tuples that are identical in all their attribute values. Hence, in gen-
eral, an SQL table is not a set of tuples, because a set does not allow two identical
members; rather, it is a multiset (sometimes called a bag) of tuples. Some SQL rela-
tions are constrained to be sets because a key constraint has been declared or because
the DISTINCT option has been used with the SELECT statement (described later in
this section). We should be aware of this distinction as we discuss the examples.

4.3.1 The SELECT-FROM-WHERE Structure
of Basic SOL Queries
Queries in SQL can be very complex. We will start with simple queries, and then

progress to more complex ones in a step-by-step manner. The basic form of the
SELECT statement, sometimes called a mapping or a select-from-where block, is
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formed of the three clauses SELECT, FROM, and WHERE and has the following
form:®

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

where

m <attribute list> is a list of attribute names whose values are to be retrieved by
the query.
B <table list> is a list of the relation names required to process the query.

B <condition> is a conditional (Boolean) expression that identifies the tuples
to be retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with
one another and with literal constants are =, <, <=, >, >=, and <>. These corre-
spond to the relational algebra operators =, <, <, >, 2, and #, respectively, and to the
C/C++ programming language operators =, <, <=, >, >=, and !=. The main syntac-
tic difference is the not equal operator. SQL has additional comparison operators
that we will present gradually.

We illustrate the basic SELECT statement in SQL with some sample queries. The
queries are labeled here with the same query numbers used in Chapter 6 for easy
cross-reference.

Query 0. Retrieve the birth date and address of the employee(s) whose name
is ‘John B. Smith’

Qo: SELECT Bdate, Address
FROM EMPLOYEE
WHERE Fname=‘John’ AND Minit="B’ AND Lname="‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause. The
query selects the individual EMPLOYEE tuples that satisfy the condition of the
WHERE clause, then projects the result on the Bdate and Address attributes listed in
the SELECT clause.

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,
which are called the projection attributes, and the WHERE clause specifies the
Boolean condition that must be true for any retrieved tuple, which is known as the
selection condition. Figure 4.3(a) shows the result of query QO on the database of
Figure 3.6.

We can think of an implicit tuple variable or iterator in the SQL query ranging or
looping over each individual tuple in the EMPLOYEE table and evaluating the condi-
tion in the WHERE clause. Only those tuples that satisfy the condition—that is,

9The SELECT and FROM clauses are required in all SOL queries. The WHERE is optional (see Section
4.3.3).
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Figure 4.3
Results of SQL queries when applied to the COMPANY database state shown
in Figure 3.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

(a) Bdate Address (b) | Fname Lname Address
1965-01-09 | 731Fondren, Houston, TX John Smith 731 Fondren, Houston, TX
Franklin | Wong 638 Voss, Houston, TX
Ramesh | Narayan | 975 Fire Oak, Humble, TX
Joyce English | 5631 Rice, Houston, TX

(c) | Pnumber Dnum Lname Address Bdate @ Ssn Dname
10 4 Wallace | 291Berry, Bellaire, TX | 1941-06-20 123456789 Research
30 4 Wallace | 291Berry, Bellaire, TX | 1941-06-20 333445555 Research
999887777 Research
987654321 Research
(d) | E.Fname E.Lname S.Fname S.Lname
666884444 | Research
John Smith Franklin Wong
453453453 Research
Franklin Wong James Borg
— - 987987987 Research
Alicia Zelaya Jennifer Wallace
- 888665555 Research
Jennifer Wallace James Borg — -
Ramesh Narayan Frankiin Wong 123456789 Administration
333445555 | Administrati
Joyce English Franklin Wong mfnfs e fon
Ahmad Jabbar Jennifer Wallace 999887777 Administration
987654321 Administration
666884444 | Administration
(e) | EFname 453453453 | Administration
123456789 987987987 Administration
333445555 888665555 | Administration
999887777 123456789 Headquarters
987654321 333445555 | Headquarters
666884444 999887777 Headquarters
453453453 987654321 | Headquarters
987987987 666884444 | Headquarters
888665555 453453453 | Headquarters
987987987 Headquarters
888665555 | Headquarters
(@
Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
John B Smith 123456789 |1965-09-01 | 731 Fondren, Houston, TX | M |30000 | 333445555 | 5
Franklin T Wong 333445555 |1955-12-08 | 638 Voss, Houston, TX M |40000 (888665555 | 5
Ramesh | K Narayan | 666884444 (1962-09-15 | 975 Fire Oak, Humble, TX | M [38000 | 333445555 | 5
Joyce A English | 453453453 |1972-07-31 | 5631 Rice, Houston, TX F |25000 |333445555 | 5
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those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Qt: SELECT Fname, Lname, Address
FROM EMPLOYEE, DEPARTMENT
WHERE Dname=‘Research’ AND Dnumber=Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condi-
tion that chooses the particular tuple of interest in the DEPARTMENT table, because
Dname is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a
join condition, because it combines two tuples: one from DEPARTMENT and one
from EMPLOYEE, whenever the value of Dnumber in DEPARTMENT is equal to the
value of Dno in EMPLOYEE. The result of query Q1 is shown in Figure 4.3(b). In
general, any number of selection and join conditions may be specified in a single
SQL query.

A query that involves only selection and join conditions plus projection attributes is
known as a select-project-join query. The next example is a select-project-join
query with two join conditions.

Query 2. For every project located in ‘Stafford), list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

Plocation="Stafford’;

The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the
result will be a combination of one project, one department, and one employee that
satisfies the join conditions. The projection attributes are used to choose the attrib-
utes to be displayed from each combined tuple. The result of query Q2 is shown in
Figure 4.3(c).

4.3.2 Ambiguous Attribute Names, Aliasing,
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the attrib-
utes are in different relations. If this is the case, and a multitable query refers to two or
more attributes with the same name, we must qualify the attribute name with the
relation name to prevent ambiguity. This is done by prefixing the relation name to
the attribute name and separating the two by a period. To illustrate this, suppose that
in Figures 3.5 and 3.6 the Dno and Lname attributes of the EMPLOYEE relation were
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called Dnumber and Name, and the Dname attribute of DEPARTMENT was also called
Name; then, to prevent ambiguity, query Q1 would be rephrased as shown in Q1A. We
must prefix the attributes Name and Dnumber in Q1A to specify which ones we are
referring to, because the same attribute names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.Name="‘Research’ AND
DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambiguity
in attribute names. Q1 is shown in this manner as is Q1’ below. We can also create
an alias for each table name to avoid repeated typing of long table names (see Q8
below).

Q1': SELECT EMPLOYEE.Fname, EMPLOYEE.LName,
EMPLOYEE.Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.DName=‘Research’ AND
DEPARTMENT.Dnumber=EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and
the first and last name of his or her immediate supervisor.

Qs8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

In this case, we are required to declare alternative relation names E and S, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example,
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible
to rename the relation attributes within the query in SQL by giving them aliases.
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and so
on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the
first, E, represents employees in the role of supervisees or subordinates; the second,
S, represents employees in the role of supervisors. We can now join the two copies.
Of course, in reality there is only one EMPLOYEE relation, and the join condition is
meant to join the relation with itself by matching the tuples that satisfy the join con-
dition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recursive
query, as we will discuss in Section 6.4.2. In earlier versions of SQL, it was not pos-
sible to specify a general recursive query, with an unknown number of levels, in a
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single SQL statement. A construct for specifying recursive queries has been incorpo-
rated into SQL:1999 (see Chapter 5).

The result of query Q8 is shown in Figure 4.3(d). Whenever one or more aliases are
given to a relation, we can use these names to represent different references to that
same relation. This permits multiple references to the same relation within a query.

We can use this alias-naming mechanism in any SQL query to specify tuple vari-
ables for every table in the WHERE clause, whether or not the same relation needs to
be referenced more than once. In fact, this practice is reccommended since it results
in queries that are easier to comprehend. For example, we could specify query Q1 as
in Q1B:

Q1B: SELECT E.Fname, E.LName, E.Address
FROM EMPLOYEE E, DEPARTMENT D
WHERE D.DName=‘Research’ AND D.Dnumber=E.Dno;

4.3.3 Unspecified WHERE Clause
and Use of the Asterisk

We discuss two more features of SQL here. A missing WHERE clause indicates no
condition on tuple selection; hence, all tuples of the relation specified in the FROM
clause qualify and are selected for the query result. If more than one relation is spec-
ified in the FROM clause and there is no WHERE clause, then the CROSS
PRODUCT—all possible tuple combinations—of these relations is selected. For
example, Query 9 selects all EMPLOYEE Ssns (Figure 4.3(e)), and Query 10 selects
all combinations of an EMPLOYEE Ssn and a DEPARTMENT Dname, regardless of
whether the employee works for the department or not (Figure 4.3(f)).

Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of
EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn
FROM EMPLOYEE;

Qio: SELECT Ssn, Dname
FROM EMPLOYEE, DEPARTMENT;

It is extremely important to specify every selection and join condition in the
WHERE clause; if any such condition is overlooked, incorrect and very large rela-
tions may result. Notice that Q10 is similar to a CROSS PRODUCT operation fol-
lowed by a PROJECT operation in relational algebra (see Chapter 6). If we specify all
the attributes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS
PRODUCT (except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all
the attributes. For example, query Q1C retrieves all the attribute values of any
EMPLOYEE who works in DEPARTMENT number 5 (Figure 4.3(g)), query Q1D
retrieves all the attributes of an EMPLOYEE and the attributes of the DEPARTMENT in
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which he or she works for every employee of the ‘Research’ department, and Q10A
specifies the CROSS PRODUCT of the EMPLOYEE and DEPARTMENT relations.

Q1C: SELECT *
FROM EMPLOYEE
WHERE Dno=5;

Q1D: SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE Dname=‘Research’ AND Dno=Dnumber;

Q10A: SELECT *
FROM EMPLOYEE, DEPARTMENT;

4.3.4 Tables as Sets in SOL

As we mentioned earlier, SQL usually treats a table not as a set but rather as a
multiset; duplicate tuples can appear more than once in a table, and in the result of a
query. SQL does not automatically eliminate duplicate tuples in the results of
queries, for the following reasons:

® Duplicate elimination is an expensive operation. One way to implement it is
to sort the tuples first and then eliminate duplicates.

® The user may want to see duplicate tuples in the result of a query.

B When an aggregate function (see Section 5.1.7) is applied to tuples, in most
cases we do not want to eliminate duplicates.

An SQL table with a key is restricted to being a set, since the key value must be dis-
tinct in each tuple.!? If we do want to eliminate duplicate tuples from the result of
an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning that
only distinct tuples should remain in the result. In general, a query with SELECT
DISTINCT eliminates duplicates, whereas a query with SELECT ALL does not.
Specifying SELECT with neither ALL nor DISTINCT—as in our previous examples—
is equivalent to SELECT ALL. For example, Q11 retrieves the salary of every
employee; if several employees have the same salary, that salary value will appear as
many times in the result of the query, as shown in Figure 4.4(a). If we are interested
only in distinct salary values, we want each value to appear only once, regardless of
how many employees earn that salary. By using the keyword DISTINCT as in Q11A,
we accomplish this, as shown in Figure 4.4(b).

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary
values (Q11A).

Qi1:  SELECT ALL Salary
FROM EMPLOYEE;

Qi11A: SELECT DISTINCT Salary
FROM EMPLOYEE;

10In general, an SQL table is not required to have a key, although in most cases there will be one.
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Figure 4.4
Results of additional
SQL queries when

applied to the COM-
PANY database state

shown in Figure 3.6.
(@ Q11. (b) Q11A.
() Q16.(d) a18.

(a) | Salary (b) | Salary (©) | e Lreme
30000 30000
40000 40000
25000 25000
43000 43000
38000 38000 (d) | Fname Lname
25000 55000 James Borg
25000
55000

SQL has directly incorporated some of the set operations from mathematical set
theory, which are also part of relational algebra (see Chapter 6). There are set union
(UNION), set difference (EXCEPT),!! and set intersection (INTERSECT) operations.
The relations resulting from these set operations are sets of tuples; that is, duplicate
tuples are eliminated from the result. These set operations apply only to union-com-
patible relations, so we must make sure that the two relations on which we apply the
operation have the same attributes and that the attributes appear in the same order
in both relations. The next example illustrates the use of UNION.

Query 4. Make a list of all project numbers for projects that involve an
employee whose last name is ‘Smith), either as a worker or as a manager of the
department that controls the project.

Q4A: (SELECT DISTINCT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn
AND Lname="Smith’)

UNION
( SELECT DISTINCT Pnumber
FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Essn=Ssn
AND Lname=‘Smith’ );

The first SELECT query retrieves the projects that involve a ‘Smith’ as manager of
the department that controls the project, and the second retrieves the projects that
involve a ‘Smith’ as a worker on the project. Notice that if several employees have the
last name ‘Smith’, the project names involving any of them will be retrieved.
Applying the UNION operation to the two SELECT queries gives the desired result.

SQL also has corresponding multiset operations, which are followed by the keyword
ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets (dupli-
cates are not eliminated). The behavior of these operations is illustrated by the
examples in Figure 4.5. Basically, each tuple—whether it is a duplicate or not—is
considered as a different tuple when applying these operations.

"In some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.
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Figure 4.5
a3 as a2 The results of SQL multiset
a2 (d T operations. (a) Two tables,
a3 A R(A) and S(A). (b) R(A)
24 a UNION ALL S(A). (c) R(A)
EXCEPT ALL S(A). (d) R(A)
ad a2 INTERSECT ALL S(A).

4.3.5 Substring Pattern Matching and Arithmetic Operators

In this section we discuss several more features of SQL. The first feature allows com-
parison conditions on only parts of a character string, using the LIKE comparison
operator. This can be used for string pattern matching. Partial strings are specified
using two reserved characters: % replaces an arbitrary number of zero or more
characters, and the underscore (_) replaces a single character. For example, consider
the following query.

Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Address LIKE ‘%Houston, TX%’;

To retrieve all employees who were born during the 1950s, we can use Query Q12A.
Here, ‘5’ must be the third character of the string (according to our format for date),
so we use the value_ 5 , with each underscore serving as a placeholder

for an arbitrary character.
Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Bdate LIKE‘_ _ 5 ’;

If an underscore or % is needed as a literal character in the string, the character
should be preceded by an escape character, which is specified after the string using
the keyword ESCAPE. For example, ‘AB\_CD\%EF’ ESCAPE ‘\’ represents the literal
string ‘AB_CD%EF because \ is specified as the escape character. Any character not
used in the string can be chosen as the escape character. Also, we need a rule to
specify apostrophes or single quotation marks (‘) if they are to be included in a
string because they are used to begin and end strings. If an apostrophe () is needed,
it is represented as two consecutive apostrophes (”) so that it will not be interpreted
as ending the string. Notice that substring comparison implies that attribute values
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are not atomic (indivisible) values, as we had assumed in the formal relational
model (see Section 3.1).

Another feature allows the use of arithmetic in queries. The standard arithmetic
operators for addition (+), subtraction (-), multiplication (*), and division (/) can
be applied to numeric values or attributes with numeric domains. For example,
suppose that we want to see the effect of giving all employees who work on the
‘ProductX’ project a 10 percent raise; we can issue Query 13 to see what their
salaries would become. This example also shows how we can rename an attribute in
the query result using AS in the SELECT clause.

Query 13. Show the resulting salaries if every employee working on the
‘ProductX’ project is given a 10 percent raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal
FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND

P.Pname=‘ProductX’;

For string data types, the concatenate operator || can be used in a query to append
two string values. For date, time, timestamp, and interval data types, operators
include incrementing (+) or decrementing (—) a date, time, or timestamp by an
interval. In addition, an interval value is the result of the difference between two
date, time, or timestamp values. Another comparison operator, which can be used
for convenience, is BETWEEN, which is illustrated in Query 14.

Query 14. Retrieve all employees in department 5 whose salary is between
$30,000 and $40,000.

Q14: SELECT *
FROM EMPLOYEE
WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

4.3.6 Ordering of Query Results

SQL allows the user to order the tuples in the result of a query by the values of one
or more of the attributes that appear in the query result, by using the ORDER BY
clause. This is illustrated by Query 15.

Query 15. Retrieve a list of employees and the projects they are working on,
ordered by department and, within each department, ordered alphabetically by
last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname
FROM DEPARTMENT D, EMPLOYEE E, WORKS_ON W,
PROJECT P
WHERE D.Dnumber= E.Dno AND E.Ssn= W.Essn AND
W.Pno= P.Pnumber
ORDER BY D.Dname, E.Lname, E.Fname;
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The default order is in ascending order of values. We can specify the keyword DESC
if we want to see the result in a descending order of values. The keyword ASC can be
used to specify ascending order explicitly. For example, if we want descending
alphabetical order on Dname and ascending order on Lname, Fname, the ORDER BY
clause of Q15 can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

4.3.7 Discussion and Summary
of Basic SQOL Retrieval Queries

A simple retrieval query in SQL can consist of up to four clauses, but only the first
two—SELECT and FROM—are mandatory. The clauses are specified in the follow-
ing order, with the clauses between square brackets [ ... | being optional:

SELECT <attribute list>
FROM <table list>

[ WHERE <condition> ]

[ ORDER BY <attribute list> |;

The SELECT clause lists the attributes to be retrieved, and the FROM clause specifies
all relations (tables) needed in the simple query. The WHERE clause identifies the
conditions for selecting the tuples from these relations, including join conditions if
needed. ORDER BY specifies an order for displaying the results of a query. Two addi-
tional clauses GROUP BY and HAVING will be described in Section 5.1.8.

In Chapter 5, we will present more complex features of SQL retrieval queries. These
include the following: nested queries that allow one query to be included as part of
another query; aggregate functions that are used to provide summaries of the infor-
mation in the tables; two additional clauses (GROUP BY and HAVING) that can be
used to provide additional power to aggregate functions; and various types of joins
that can combine records from various tables in different ways.

4.4 INSERT, DELETE, and UPDATE
Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and
UPDATE. We discuss each of these in turn.

4.41 The INSERT Command

In its simplest form, INSERT is used to add a single tuple to a relation. We must spec-
ify the relation name and a list of values for the tuple. The values should be listed in
the same order in which the corresponding attributes were specified in the CREATE
TABLE command. For example, to add a new tuple to the EMPLOYEE relation shown
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in Figure 3.5 and specified in the CREATE TABLE EMPLOYEE ... command in Figure
4.1, we can use U1:

Ul: INSERT INTO EMPLOYEE
VALUES ( ‘Richard’, ‘K, ‘Marini’, ‘653298653’ ‘1962-12-30’, ‘98
Oak Forest, Katy, TX, ‘M, 37000, ‘653298653’ 4 );

A second form of the INSERT statement allows the user to specify explicit attribute
names that correspond to the values provided in the INSERT command. This is use-
ful if a relation has many attributes but only a few of those attributes are assigned
values in the new tuple. However, the values must include all attributes with NOT
NULL specification and no default value. Attributes with NULL allowed or DEFAULT
values are the ones that can be left out. For example, to enter a tuple for a new
EMPLOYEE for whom we know only the Fname, Lname, Dno, and Ssn attributes, we
can use U1A:

U1A: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)
VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values
are listed in the same order as the attributes are listed in the INSERT command itself.
It is also possible to insert into a relation multiple tuples separated by commas in a
single INSERT command. The attribute values forming each tuple are enclosed in
parentheses.

A DBMS that fully implements SQL should support and enforce all the integrity
constraints that can be specified in the DDL. For example, if we issue the command
in U2 on the database shown in Figure 3.6, the DBMS should reject the operation
because no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly,
U2A would be rejected because no Ssn value is provided and it is the primary key,
which cannot be NULL.

U3: INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno)
VALUES (‘Robert, ‘Hatcher’, ‘980760540’ 2);
(U2 is rejected if referential integrity checking is provided by DBMS.)

U2A: INSERT INTO EMPLOYEE (Fname, Lname, Dno)
VALUES (‘Robert, ‘Hatcher’, 5);
(U2A is rejected if NOT NULL checking is provided by DBMS.)

A variation of the INSERT command inserts multiple tuples into a relation in con-
junction with creating the relation and loading it with the result of a query. For
example, to create a temporary table that has the employee last name, project name,
and hours per week for each employee working on a project, we can write the state-
ments in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO
( Emp_name VARCHAR(15),
Proj_name VARCHAR(15),
Hours_per_week DECIMAL(3,1) );
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U3B: INSERTINTO WORKS_ON_INFO ( Emp_name, Proj_name,
Hours_per_week )

SELECT E.Lname, P.Pname, W.Hours
FROM PROJECT P, WORKS_ON W, EMPLOYEE E
WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-
tion retrieved from the database by the query in U3B. We can now query
WORKS_ON_INFO as we would any other relation; when we do not need it any
more, we can remove it by using the DROP TABLE command (see Chapter 5). Notice
that the WORKS_ON_INFO table may not be up-to-date; that is, if we update any of
the PROJECT, WORKS_ON, or EMPLOYEE relations after issuing U3B, the informa-
tion in WORKS_ON_INFO may become outdated. We have to create a view (see
Chapter 5) to keep such a table up-to-date.

4.4.2 The DELETE Command

The DELETE command removes tuples from a relation. It includes a WHERE clause,
similar to that used in an SQL query, to select the tuples to be deleted. Tuples are
explicitly deleted from only one table at a time. However, the deletion may propa-
gate to tuples in other relations if referential triggered actions are specified in the ref-
erential integrity constraints of the DDL (see Section 4.2.2).!2 Depending on the
number of tuples selected by the condition in the WHERE clause, zero, one, or sev-
eral tuples can be deleted by a single DELETE command. A missing WHERE clause
specifies that all tuples in the relation are to be deleted; however, the table remains
in the database as an empty table. We must use the DROP TABLE command to
remove the table definition (see Chapter 5). The DELETE commands in U4A to U4D,
if applied independently to the database in Figure 3.6, will delete zero, one, four, and
all tuples, respectively, from the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE
WHERE Lname=‘Brown’;

U4B: DELETE FROM EMPLOYEE
WHERE Ssn=123456789’;

u4cC: DELETE FROM EMPLOYEE
WHERE Dno=5;

U4D: DELETE FROM EMPLOYEE;

4.4.3 The UPDATE Command

The UPDATE command is used to modify attribute values of one or more selected
tuples. As in the DELETE command, a WHERE clause in the UPDATE command
selects the tuples to be modified from a single relation. However, updating a

120ther actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.
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primary key value may propagate to the foreign key values of tuples in other rela-
tions if such a referential triggered action is specified in the referential integrity con-
straints of the DDL (see Section 4.2.2). An additional SET clause in the UPDATE
command specifies the attributes to be modified and their new values. For example,
to change the location and controlling department number of project number 10 to
‘Bellaire’ and 5, respectively, we use U5:

U5: UPDATE PROJECT
SET Plocation = ‘Bellaire’, Dnum = 5
WHERE Pnumber=10;

Several tuples can be modified with a single UPDATE command. An example is to
give all employees in the ‘Research’ department a 10 percent raise in salary, as shown
in U6. In this request, the modified Salary value depends on the original Salary value
in each tuple, so two references to the Salary attribute are needed. In the SET clause,
the reference to the Salary attribute on the right refers to the old Salary value before
modification, and the one on the left refers to the new Salary value after modification:

uUeé: UPDATE EMPLOYEE
SET Salary = Salary * 1.1
WHERE Dno = 5;

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that
each UPDATE command explicitly refers to a single relation only. To modify multiple
relations, we must issue several UPDATE commands.

4.5 Additional Features of SQL

SQL has a number of additional features that we have not described in this chapter
but that we discuss elsewhere in the book. These are as follows:

® In Chapter 5, which is a continuation of this chapter, we will present the fol-
lowing SQL features: various techniques for specifying complex retrieval
queries, including nested queries, aggregate functions, grouping, joined
tables, outer joins, and recursive queries; SQL views, triggers, and assertions;
and commands for schema modification.

® SQL has various techniques for writing programs in various programming
languages that include SQL statements to access one or more databases.
These include embedded (and dynamic) SQL, SQL/CLI (Call Level
Interface) and its predecessor ODBC (Open Data Base Connectivity), and
SQL/PSM (Persistent Stored Modules). We discuss these techniques in
Chapter 13. We also discuss how to access SQL databases through the Java
programming language using JDBC and SQL]J.

® FEach commercial RDBMS will have, in addition to the SQL commands, a set
of commands for specifying physical database design parameters, file struc-
tures for relations, and access paths such as indexes. We called these com-
mands a storage definition language (SDL) in Chapter 2. Earlier versions of
SQL had commands for creating indexes, but these were removed from the
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language because they were not at the conceptual schema level. Many sys-
tems still have the CREATE INDEX commands.

® SQL has transaction control commands. These are used to specify units of
database processing for concurrency control and recovery purposes. We dis-
cuss these commands in Chapter 21 after we discuss the concept of transac-
tions in more detail.

® SQL has language constructs for specifying the granting and revoking of priv-
ileges to users. Privileges typically correspond to the right to use certain SQL
commands to access certain relations. Each relation is assigned an owner,
and either the owner or the DBA staff can grant to selected users the privi-
lege to use an SQL statement—such as SELECT, INSERT, DELETE, or
UPDATE—to access the relation. In addition, the DBA staff can grant the
privileges to create schemas, tables, or views to certain users. These SQL
commands—called GRANT and REVOKE—are discussed in Chapter 24,
where we discuss database security and authorization.

® SQL has language constructs for creating triggers. These are generally
referred to as active database techniques, since they specify actions that are
automatically triggered by events such as database updates. We discuss these
features in Section 26.1, where we discuss active database concepts.

® SQL has incorporated many features from object-oriented models to have
more powerful capabilities, leading to enhanced relational systems known as
object-relational. Capabilities such as creating complex-structured attrib-
utes (also called nested relations), specifying abstract data types (called
UDTs or user-defined types) for attributes and tables, creating object iden-
tifiers for referencing tuples, and specifying operations on types are dis-
cussed in Chapter 11.

B SQL and relational databases can interact with new technologies such as
XML (see Chapter 12) and OLAP (Chapter 29).

4.6 Summary

In this chapter we presented the SQL database language. This language and its vari-
ations have been implemented as interfaces to many commercial relational DBMSs,
including Oracle’s Oracle and Rdb'?; IBM’s DB2, Informix Dynamic Server, and
SQL/DS; Microsoft’s SQL Server and Access; and INGRES. Some open source sys-
tems also provide SQL, such as MySQL and PostgreSQL. The original version of
SQL was implemented in the experimental DBMS called SYSTEM R, which was
developed at IBM Research. SQL is designed to be a comprehensive language that
includes statements for data definition, queries, updates, constraint specification,
and view definition. We discussed the following features of SQL in this chapter: the
data definition commands for creating tables, commands for constraint specifica-
tion, simple retrieval queries, and database update commands. In the next chapter,

13Rdb was originally produced by Digital Equipment Corporation. It was acquired by Oracle from Digital
in 1994 and is being supported and enhanced.
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we will present the following features of SQL: complex retrieval queries; views; trig-
gers and assertions; and schema modification commands.

Review Questions

4.1.

4.2,
4.3.

4.4.

How do the relations (tables) in SQL differ from the relations defined for-
mally in Chapter 3? Discuss the other differences in terminology. Why does
SQL allow duplicate tuples in a table or in a query result?

List the data types that are allowed for SQL attributes.

How does SQL allow implementation of the entity integrity and referential
integrity constraints described in Chapter 3¢ What about referential trig-
gered actions?

Describe the four clauses in the syntax of a simple SQL retrieval query. Show
what type of constructs can be specified in each of the clauses. Which are
required and which are optional?

Exercises

4.5.

4.6.
4.7.

4.8.

4.9.

4.10.

Consider the database shown in Figure 1.2, whose schema is shown in Figure
2.1. What are the referential integrity constraints that should hold on the
schema? Write appropriate SQL DDL statements to define the database.

Repeat Exercise 4.5, but use the AIRLINE database schema of Figure 3.8.

Consider the LIBRARY relational database schema shown in Figure 4.6.
Choose the appropriate action (reject, cascade, set to NULL, set to default) for
each referential integrity constraint, both for the deletion of a referenced
tuple and for the update of a primary key attribute value in a referenced
tuple. Justify your choices.

Write appropriate SQL DDL statements for declaring the LIBRARY relational
database schema of Figure 4.6. Specify the keys and referential triggered
actions.

How can the key and foreign key constraints be enforced by the DBMS? Is
the enforcement technique you suggest difficult to implement? Can the con-
straint checks be executed efficiently when updates are applied to the data-
base?

Specify the following queries in SQL on the COMPANY relational database
schema shown in Figure 3.5. Show the result of each query if it is applied to
the COMPANY database in Figure 3.6.

a. Retrieve the names of all employees in department 5 who work more than
10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.
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c. Find the names of all employees who are directly supervised by ‘Franklin
Wong.

4.11. Specify the updates of Exercise 3.11 using the SQL update commands.
4.12. Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in ‘CS’ (computer sci-
ence).

b. Retrieve the names of all courses taught by Professor King in 2007 and
2008.

c. For each section taught by Professor King, retrieve the course number,
semester, year, and number of students who took the section.

d. Retrieve the name and transcript of each senior student (Class = 4)
majoring in CS. A transcript includes course name, course number, credit
hours, semester, year, and grade for each course completed by the student.
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4.13.

4.14.

4.15.

4.16.

Write SQL update statements to do the following on the database schema
shown in Figure 1.2.

a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database.

b. Change the class of student ‘Smith’ to 2.

c. Insert a new course, <‘Knowledge Engineering, ‘CS4390’, 3, ‘CS’>.

d. Delete the record for the student whose name is ‘Smith’ and whose stu-
dent number is 17.

Design a relational database schema for a database application of your

choice.

a. Declare your relations, using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database
application.

c. Based on your expected use of the database, choose some attributes that
should have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

Consider the EMPLOYEE table’s constraint EMPSUPERFK as specified in
Figure 4.2 is changed to read as follows:

CONSTRAINT EMPSUPERFK
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE CASCADE ON UPDATE CASCADE,

Answer the following questions:
a. What happens when the following command is run on the database state

shown in Figure 3.6?

DELETE EMPLOYEE WHERE Lname = ‘Borg’
b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint

ON DELETE?

Write SQL statements to create a table EMPLOYEE_BACKUP to back up the
EMPLOYEE table shown in Figure 3.6.

Selected Bibliography

The SQL language, originally named SEQUEL, was based on the language SQUARE
(Specifying Queries as Relational Expressions), described by Boyce et al. (1975). The
syntax of SQUARE was modified into SEQUEL (Chamberlin and Boyce, 1974) and
then into SEQUEL 2 (Chamberlin et al. 1976), on which SQL is based. The original
implementation of SEQUEL was done at IBM Research, San Jose, California. We
will give additional references to various aspects of SQL at the end of Chapter 5.
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More SQL: Complex Queries,
Triggers, Views, and
Schema Modification

This chapter describes more advanced features of the
SQL language standard for relational databases. We
start in Section 5.1 by presenting more complex features of SQL retrieval queries,
such as nested queries, joined tables, outer joins, aggregate functions, and grouping.
In Section 5.2, we describe the CREATE ASSERTION statement, which allows the
specification of more general constraints on the database. We also introduce the
concept of triggers and the CREATE TRIGGER statement, which will be presented in
more detail in Section 26.1 when we present the principles of active databases.
Then, in Section 5.3, we describe the SQL facility for defining views on the database.
Views are also called virtual or derived tables because they present the user with
what appear to be tables; however, the information in those tables is derived from
previously defined tables. Section 5.4 introduces the SQL ALTER TABLE statement,
which is used for modifying the database tables and constraints. Section 5.5 is the
chapter summary.

This chapter is a continuation of Chapter 4. The instructor may skip parts of this
chapter if a less detailed introduction to SQL is intended.

5.1 More Complex SQL Retrieval Queries

In Section 4.3, we described some basic types of retrieval queries in SQL. Because of
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We dis-
cuss several of these features in this section.
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5.1.1 Comparisons Involving NULL
and Three-Valued Logic

SQL has various rules for dealing with NULL values. Recall from Section 3.1.2 that
NULL is used to represent a missing value, but that it usually has one of three different
interpretations—value unknown (exists but is not known), value not available (exists
but is purposely withheld), or value not applicable (the attribute is undefined for this
tuple). Consider the following examples to illustrate each of the meanings of NULL.

1. Unknown value. A person’s date of birth is not known, so it is represented
by NULL in the database.

2. Unavailable or withheld value. A person has a home phone but does not
want it to be listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for
a person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for example,
a NULL for the home phone of a person can have any of the three meanings. Hence,
SQL does not distinguish between the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other
NULL value in the various database records. When a NULL is involved in a compari-
son operation, the result is considered to be UNKNOWN (it may be TRUE or it may
be FALSE). Hence, SQL uses a three-valued logic with values TRUE, FALSE, and
UNKNOWN instead of the standard two-valued (Boolean) logic with values TRUE or
FALSE. It is therefore necessary to define the results (or truth values) of three-valued
logical expressions when the logical connectives AND, OR, and NOT are used. Table
5.1 shows the resulting values.

Table 5.1 Logical Connectives in Three-Valued Logic
(@ AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
(© NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN
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In Tables 5.1(a) and 5.1(b), the rows and columns represent the values of the results
of comparison conditions, which would typically appear in the WHERE clause of an
SQL query. Each expression result would have a value of TRUE, FALSE, or
UNKNOWN. The result of combining the two values using the AND logical connec-
tive is shown by the entries in Table 5.1(a). Table 5.1(b) shows the result of using the
OR logical connective. For example, the result of (FALSE AND UNKNOWN) is FALSE,
whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 5.1(c) shows the
result of the NOT logical operation. Notice that in standard Boolean logic, only
TRUE or FALSE values are permitted; there is no UNKNOWN value.

In select-project-join queries, the general rule is that only those combinations of
tuples that evaluate the logical expression in the WHERE clause of the query to
TRUE are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are not
selected. However, there are exceptions to that rule for certain operations, such as
outer joins, as we shall see in Section 5.1.6.

SQL allows queries that check whether an attribute value is NULL. Rather than using
= or <> to compare an attribute value to NULL, SQL uses the comparison operators
IS or IS NOT. This is because SQL considers each NULL value as being distinct from
every other NULL value, so equality comparison is not appropriate. It follows that
when a join condition is specified, tuples with NULL values for the join attributes are
not included in the result (unless it is an OUTER JOIN; see Section 5.1.6). Query 18
illustrates this.

Query 18. Retrieve the names of all employees who do not have supervisors.

Q18: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn IS NULL;

5.1.2 Nested Queries, Tuples,
and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used
in a comparison condition. Such queries can be conveniently formulated by using
nested queries, which are complete select-from-where blocks within the WHERE
clause of another query. That other query is called the outer query. Query 4 is for-
mulated in Q4 without a nested query, but it can be rephrased to use nested queries
as shown in Q4A. Q4A introduces the comparison operator IN, which compares a
value v with a set (or multiset) of values V and evaluates to TRUE if v is one of the
elements in V.

The first nested query selects the project numbers of projects that have an employee
with last name ‘Smith’ involved as manager, while the second nested query selects
the project numbers of projects that have an employee with last name ‘Smith’
involved as worker. In the outer query, we use the OR logical connective to retrieve a
PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested

query.
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Q4A: SELECT DISTINCT Pnumber

FROM PROJECT
WHERE Pnumber IN
( SELECT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND
Mgr_ssn=Ssn AND Lname="Smith’ )
OR
Pnumber IN
( SELECT Pno
FROM WORKS_ON, EMPLOYEE
WHERE Essn=Ssn AND Lname=‘Smith’ );

If a nested query returns a single attribute and a single tuple, the query result will be
a single (scalar) value. In such cases, it is permissible to use = instead of IN for the
comparison operator. In general, the nested query will return a table (relation),
which is a set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE (Pno, Hours) IN ( SELECT Pno, Hours
FROM WORKS_ON
WHERE Essn=‘123456789’ );

This query will select the Essns of all employees who work the same (project, hours)
combination on some project that employee John Smith’ (whose Ssn =
123456789’) works on. In this example, the IN operator compares the subtuple of
values in parentheses (Pno, Hours) within each tuple in WORKS_ON with the set of
type-compatible tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used
to compare a single value v (typically an attribute name) to a set or multiset v (typ-
ically a nested query). The = ANY (or = SOME) operator returns TRUE if the value v
is equal to some value in the set V and is hence equivalent to IN. The two keywords
ANY and SOME have the same effect. Other operators that can be combined with
ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-
bined with each of these operators. For example, the comparison condition (v > ALL
V') returns TRUE if the value v is greater than all the values in the set (or multiset) V.
An example is the following query, which returns the names of employees whose
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL  ( SELECT Salary
FROM EMPLOYEE
WHERE Dno=5 );
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Notice that this query can also be specified using the MAX aggregate function (see
Section 5.1.7).

In general, we can have several levels of nested queries. We can once again be faced
with possible ambiguity among attribute names if attributes of the same name
exist—one in a relation in the FROM clause of the outer query, and another in a rela-
tion in the FROM clause of the nested query. The rule is that a reference to an
unqualified attribute refers to the relation declared in the innermost nested query.
For example, in the SELECT clause and WHERE clause of the first nested query of
Q4A, a reference to any unqualified attribute of the PROJECT relation refers to the
PROJECT relation specified in the FROM clause of the nested query. To refer to an
attribute of the PROJECT relation specified in the outer query, we specify and refer
to an alias (tuple variable) for that relation. These rules are similar to scope rules for
program variables in most programming languages that allow nested procedures
and functions. To illustrate the potential ambiguity of attribute names in nested
queries, consider Query 16.

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E
WHERE E.SsnIN ( SELECT Essn
FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent_name
AND E.Sex=D.Sex );

In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attrib-
ute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute
called Sex. If there were any unqualified references to Sex in the nested query, they
would refer to the Sex attribute of DEPENDENT. However, we would not have to
qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested
query because the DEPENDENT relation does not have attributes called Fname and
Ssn, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced
in an SQL query to avoid potential errors and ambiguities, as illustrated in Q186.

5.1.3 Correlated Nested Queries

Whenever a condition in the WHERE clause of a nested query references some attrib-
ute of a relation declared in the outer query, the two queries are said to be correlated.
We can understand a correlated query better by considering that the nested query is
evaluated once for each tuple (or combination of tuples) in the outer query. For exam-
ple, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the nested
query, which retrieves the Essn values for all DEPENDENT tuples with the same sex
and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple is in the
result of the nested query, then select that EMPLOYEE tuple.
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In general, a query written with nested select-from-where blocks and using the = or
IN comparison operators can always be expressed as a single block query. For exam-
ple, Q16 may be written as in Q16A:

Q16A: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.Ssn=D.Essn AND E.Sex=D.Sex
AND E.Fname=D.Dependent_name;

5.1.4 The EXISTS and UNIQUE Functions in SQL

The EXISTS function in SQL is used to check whether the result of a correlated
nested query is empty (contains no tuples) or not. The result of EXISTS is a Boolean
value TRUE if the nested query result contains at least one tuple, or FALSE if the
nested query result contains no tuples. We illustrate the use of EXISTS—and NOT
EXISTS—with some examples. First, we formulate Query 16 in an alternative form
that uses EXISTS as in Q16B:

Q16B: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E
WHERE EXISTS ( SELECT *
FROM DEPENDENT AS D
WHERE  E.Ssn=D.Essn AND E.Sex=D.Sex
AND E.Fname=D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested
query. In Q16B, the nested query references the Ssn, Fname, and Sex attributes of the
EMPLOYEE relation from the outer query. We can think of Q16B as follows: For each
EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT tuples
with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at least one
tuple EXISTS in the result of the nested query, then select that EMPLOYEE tuple. In
general, EXISTS(Q) returns TRUE if there is at least one tuple in the result of the
nested query Q, and it returns FALSE otherwise. On the other hand, NOT EXISTS(Q)
returns TRUE if there are no tuples in the result of nested query Q, and it returns
FALSE otherwise. Next, we illustrate the use of NOT EXISTS.

Query 6. Retrieve the names of employees who have no dependents.

Q6: SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS ( SELECT *
FROM DEPENDENT
WHERE Ssn=Essn );

In Q8, the correlated nested query retrieves all DEPENDENT tuples related to a par-
ticular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because the
WHERE-clause condition will evaluate to TRUE in this case. We can explain Q6 as
follows: For each EMPLOYEE tuple, the correlated nested query selects all
DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the result is
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empty, no dependents are related to the employee, so we select that EMPLOYEE
tuple and retrieve its Fname and Lname.

Query 7. List the names of managers who have at least one dependent.

Q7: SELECT Fname, Lname
FROM EMPLOYEE
WHERE EXISTS ( SELECT *
FROM DEPENDENT
WHERE  Ssn=Essn)
AND
EXISTS ( SELECT *
FROM DEPARTMENT
WHERE  Ssn=Mgr_ssn );

One way to write this query is shown in Q7, where we specify two nested correlated
queries; the first selects all DEPENDENT tuples related to an EMPLOYEE, and the sec-
ond selects all DEPARTMENT tuples managed by the EMPLOYEE. If at least one of the
first and at least one of the second exists, we select the EMPLOYEE tuple. Can you
rewrite this query using only a single nested query or no nested queries?

The query Q83: Retrieve the name of each employee who works on all the projects con-
trolled by department number 5 can be written using EXISTS and NOT EXISTS in SQL
systems. We show two ways of specifying this query Q3 in SQL as Q3A and Q3B.
This is an example of certain types of queries that require universal quantification, as
we will discuss in Section 6.6.7. One way to write this query is to use the construct
(82 EXCEPT S1) as explained next, and checking whether the result is empty.! This
option is shown as Q3A.

Q3A: SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS ( ( SELECT Pnumber
FROM PROJECT
WHERE Dnum=5)
EXCEPT ( SELECT Pno
FROM WORKS_ON
WHERE Ssn=Essn) );

In Q3A, the first subquery (which is not correlated with the outer query) selects all
projects controlled by department 5, and the second subquery (which is correlated)
selects all projects that the particular employee being considered works on. If the set
difference of the first subquery result MINUS (EXCEPT) the second subquery result is
empty, it means that the employee works on all the projects and is therefore selected.

The second option is shown as Q3B. Notice that we need two-level nesting in Q3B
and that this formulation is quite a bit more complex than Q3A, which uses NOT
EXISTS and EXCEPT.

'Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, for
example, in Oracle.
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Q3B: SELECT Lname, Fname
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
FROM WORKS_ON B
WHERE (B.PnoIN (SELECT Pnumber
FROM PROJECT
WHERE Dnum=5)
AND
NOT EXISTS ( SELECT *
FROM WORKS_ON C
WHERE C.Essn=Ssn
AND C.Pno=B.Pno )));

In Q83B, the outer nested query selects any WORKS_ON (B) tuples whose Pno is of a
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the
same Pno and the same Ssn as that of the EMPLOYEE tuple under consideration in
the outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of
Q3B matches the following rephrasing of Query 3: Select each employee such that
there does not exist a project controlled by department 5 that the employee does not
work on. It corresponds to the way we will write this query in tuple relation calculus
(see Section 6.6.7).

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be
used to test whether the result of a nested query is a set or a multiset.

5.1.5 Explicit Sets and Renaming of Attributes in SQL

We have seen several queries with a nested query in the WHERE clause. It is also pos-
sible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses in SQL.

Query 17. Retrieve the Social Security numbers of all employees who work on
project numbers 1, 2, or 3.

Qi17: SELECT DISTINCT Essn
FROM WORKS_ON
WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query by
adding the qualifier AS followed by the desired new name. Hence, the AS construct
can be used to alias both attribute and relation names, and it can be used in both the
SELECT and FROM clauses. For example, Q8A shows how query Q8 from Section
4.3.2 can be slightly changed to retrieve the last name of each employee and his or
her supervisor, while renaming the resulting attribute names as Employee_name and
Supervisor_name. The new names will appear as column headers in the query result.

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;
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5.1.6 Joined Tables in SQL and Outer Joins

The concept of a joined table (or joined relation) was incorporated into SQL to
permit users to specify a table resulting from a join operation in the FROM clause of
a query. This construct may be easier to comprehend than mixing together all the
select and join conditions in the WHERE clause. For example, consider query Q1,
which retrieves the name and address of every employee who works for the
‘Research’ department. It may be easier to specify the join of the EMPLOYEE and
DEPARTMENT relations first, and then to select the desired tuples and attributes.
This can be written in SQL as in Q1A:

Q1A: SELECT Fname, Lname, Address
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="‘Research’;

The FROM clause in Q1A contains a single joined table. The attributes of such a table
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of
the second table, DEPARTMENT. The concept of a joined table also allows the user to
specify different types of join, such as NATURAL JOIN and various types of OUTER
JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an
implicit EQUIJOIN condition for each pair of attributes with the same name from R
and S is created. Each such pair of attributes is included only once in the resulting
relation (see Section 6.3.2 and 6.4.4 for more details on the various types of join
operations in relational algebra).

If the names of the join attributes are not the same in the base relations, it is possi-
ble to rename the attributes so that they match, and then to apply NATURAL JOIN. In
this case, the AS construct can be used to rename a relation and all its attributes in
the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is
renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name
of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The
implied join condition for this NATURAL JOIN is EMPLOYEE.Dno=DEPT.Dno,
because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address
FROM (EMPLOYEE NATURAL JOIN
(DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))
WHERE Dname="‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is
included in the result only if a matching tuple exists in the other relation. For exam-
ple, in query Q8A, only employees who have a supervisor are included in the result;
an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the user
requires that all employees be included, an OUTER JOIN must be used explicitly (see
Section 6.4.4 for the definition of OUTER JOIN). In SQL, this is handled by explicitly
specifying the keyword OUTER JOIN in a joined table, as illustrated in Q8B:

Q8B: SELECT E.Lname AS Employee_name,
S.Lname AS Supervisor_name
FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
ON E.Super_ssn=S.Ssn);
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There are a variety of outer join operations, which we shall discuss in more detail in
Section 6.4.4. In SQL, the options available for specifying joined tables include
INNER JOIN (only pairs of tuples that match the join condition are retrieved, same
as JOIN), LEFT OUTER JOIN (every tuple in the left table must appear in the result; if
it does not have a matching tuple, it is padded with NULL values for the attributes of
the right table), RIGHT OUTER JOIN (every tuple in the right table must appear in
the result; if it does not have a matching tuple, it is padded with NULL values for the
attributes of the left table), and FULL OUTER JOIN. In the latter three options, the
keyword OUTER may be omitted. If the join attributes have the same name, one can
also specify the natural join variation of outer joins by using the keyword NATURAL
before the operation (for example, NATURAL LEFT OUTER JOIN). The keyword
CROSS JOIN is used to specify the CARTESIAN PRODUCT operation (see Section
6.2.2), although this should be used only with the utmost care because it generates
all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may
itself be a joined table. This allows the specification of the join of three or more
tables as a single joined table, which is called a multiway join. For example, Q2A is a
different way of specifying query Q2 from Section 4.3.1 using the concept of a
joined table:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM ((PROJECT JOIN DEPARTMENT ON Dnum=Dnumber)
JOIN EMPLOYEE ON Mgr_ssn=Ssn)
WHERE Plocation="‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In
some systems, a different syntax was used to specify outer joins by using the com-
parison operators +=, =+, and +=+ for left, right, and full outer join, respectively,
when specifying the join condition. For example, this syntax is available in Oracle.
To specify the left outer join in Q8B using this syntax, we could write the query Q8C
as follows:

Q8C: SELECT E.Lname, S.Lname
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.Super_ssn += S.Ssn;

5.1.7 Aggregate Functions in SQL

In Section 6.4.2, we will introduce the concept of an aggregate function as a rela-
tional algebra operation. Aggregate functions are used to summarize information
from multiple tuples into a single-tuple summary. Grouping is used to create sub-
groups of tuples before summarization. Grouping and aggregation are required in
many database applications, and we will introduce their use in SQL through exam-
ples. A number of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and
AVG.? The COUNT function returns the number of tuples or values as specified in a

2Additional aggregate functions for more advanced statistical calculation were added in SQL-99.
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query. The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of
numeric values and return, respectively, the sum, maximum value, minimum value,
and average (mean) of those values. These functions can be used in the SELECT
clause or in a HAVING clause (which we introduce later). The functions MAX and
MIN can also be used with attributes that have nonnumeric domains if the domain
values have a total ordering among one another.? We illustrate the use of these func-
tions with sample queries.

Query 19. Find the sum of the salaries of all employees, the maximum salary,
the minimum salary, and the average salary.

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM EMPLOYEE;

If we want to get the preceding function values for employees of a specific depart-
ment—say, the ‘Research’ department—we can write Query 20, where the
EMPLOYEE tuples are restricted by the WHERE clause to those employees who work
for the ‘Research’ department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’
department, as well as the maximum salary, the minimum salary, and the aver-
age salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (*)
FROM EMPLOYEE;

Q22: SELECT  COUNT (¥)
FROM EMPLOYEE, DEPARTMENT
WHERE  DNO=DNUMBER AND DNAME="Research’;

Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of
rows in the result of the query. We may also use the COUNT function to count values
in a column rather than tuples, as in the next example.

Query 23. Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT Salary)
FROM EMPLOYEE;

If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, then
duplicate values will not be eliminated. However, any tuples with NULL for SALARY

3Total order means that for any two values in the domain, it can be determined that one appears before
the other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderings
on their values, as do alphabetic strings.
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will not be counted. In general, NULL values are discarded when aggregate func-
tions are applied to a particular column (attribute).

The preceding examples summarize a whole relation (Q19, Q21, Q23) or a selected
subset of tuples (Q20, Q22), and hence all produce single tuples or single values.
They illustrate how functions are applied to retrieve a summary value or summary
tuple from the database. These functions can also be used in selection conditions
involving nested queries. We can specify a correlated nested query with an aggregate
function, and then use the nested query in the WHERE clause of an outer query. For
example, to retrieve the names of all employees who have two or more dependents
(Query 5), we can write the following:

Q5: SELECT Lname, Fname
FROM EMPLOYEE
WHERE (SELECT COUNT (¥)
FROM DEPENDENT
WHERE  Ssn=Essn ) >= 2;

The correlated nested query counts the number of dependents that each employee
has; if this is greater than or equal to two, the employee tuple is selected.

5.1.8 Grouping: The GROUP BY and HAVING Clauses

In many cases we want to apply the aggregate functions to subgroups of tuples in a
relation, where the subgroups are based on some attribute values. For example, we
may want to find the average salary of employees in each department or the number
of employees who work on each project. In these cases we need to partition the rela-
tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) will
consist of the tuples that have the same value of some attribute(s), called the
grouping attribute(s). We can then apply the function to each such group inde-
pendently to produce summary information about each group. SQL has a GROUP
BY clause for this purpose. The GROUP BY clause specifies the grouping attributes,
which should also appear in the SELECT clause, so that the value resulting from
applying each aggregate function to a group of tuples appears along with the value
of the grouping attribute(s).

Query 24. For each department, retrieve the department number, the number
of employees in the department, and their average salary.

Q24: SELECT Dno, COUNT (*), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

In Q24, the EMPLOYEE tuples are partitioned into groups—each group having
the same value for the grouping attribute Dno. Hence, each group contains the
employees who work in the same department. The COUNT and AVG functions are
applied to each such group of tuples. Notice that the SELECT clause includes only the
grouping attribute and the aggregate functions to be applied on each group of tuples.
Figure 5.1(a) illustrates how grouping works on Q24; it also shows the result of Q24.
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Figure 5.1

(a)

Results of GROUP BY and HAVING. (a) Q24. (b) Q26.
Fname |Minit | Lname Ssn *| Salary | Super_ssn Dno Dno |Count (*) | Avg (Salary)
John B Smith 123456789 30000 | 333445555 5 5 4 33250
Franklin | T Wong 333445555 40000 | 888665555 5 4 3 31000
Ramesh | K Narayan | 666884444 38000 | 333445555 5 1 1 55000
Joyce A English | 453453453 25000 | 333445555 5 Result of Q24
Alicia J Zelaya | 999887777 25000 | 987654321 4
Jennifer S Wallace | 987654321 43000 | 888665555 4
Ahmad \ Jabbar | 987987987 25000 | 987654321 4
James E Bong 888665555 55000 | NULL 1
Grouping EMPLOYEE tuples by the value of Dno
Pname Pnumber Essn Pno Hours — These groups are not selected by
ProductX ] 193456789 ] 395 the HAVING condition of Q26.
ProductX 1 453453453 | 1 20.0 il
ProductY 2 123456789 | 2 75
ProductY 2 453453453 | 2 20.0
ProductY 2 333445555 | 2 10.0
ProductZ 3 666884444 | 3 40.0 -
ProductZ 3 333445555 | 3 10.0
Computerization 10 333445555 | 10 10.0
Computerization 10 999887777 | 10 10.0
Computerization 10 987987987 | 10 35.0
Reorganization 20 333445555 | 20 10.0
Reorganization 20 987654321 | 20 15.0
Reorganization 20 888665555 | 20 NULL
Newbenefits 30 987987987 | 30 5.0
Newbenefits 30 987654321 | 30 20.0
Newbenefits 30 999887777 | 30 30.0
After applying the WHERE clause but before applying HAVING
Pname Pnumber Essn Pno | Hours Pname Count (*)
ProductY 2 123456789 | 2 7.5 J—> ProductY 3
ProductY 2 453453453 | 2 20.0 Computerization 3
ProductY 2 333445555 | 2 10.0 Reorganization 3
Computerization 10 333445555 | 10 10.0 | Newbenefits 3
Computerization 10 9990887777 | 10 10.0 Result of Q26
Computerization 10 087987987 | 10 | 35.0 (Prumber not shown)
Reorganization 20 333445555 | 20 10.0
Reorganization 20 987654321 | 20 15.0
Reorganization 20 888665555 | 20 NULL
Newbenefits 30 987987987 | 30 5.0
Newbenefits 30 987654321 | 30 20.0 —
Newbenefits 30 999887777 | 30 30.0

After applying the HAVING clause condition
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If NULLs exist in the grouping attribute, then a separate group is created for all
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE
table had some tuples that had NULL for the grouping attribute Dno, there would be
a separate group for those tuples in the result of Q24.

Query 25. For each project, retrieve the project number, the project name, and
the number of employees who work on that project.

Q25: SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber=Pno
GROUP BY Pnumber, Pname;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this
case, the grouping and functions are applied after the joining of the two relations.
Sometimes we want to retrieve the values of these functions only for groups that sat-
isfy certain conditions. For example, suppose that we want to modify Query 25 so
that only projects with more than two employees appear in the result. SQL provides
a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this
purpose. HAVING provides a condition on the summary information regarding the
group of tuples associated with each value of the grouping attributes. Only the
groups that satisfy the condition are retrieved in the result of the query. This is illus-
trated by Query 26.

Query 26. For each project on which more than two employees work, retrieve
the project number, the project name, and the number of employees who work
on the project.

Q26: SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber=Pno
GROUP BY Pnumber, Pname
HAVING COUNT (*) > 2;

Notice that while selection conditions in the WHERE clause limit the fuples to which
functions are applied, the HAVING clause serves to choose whole groups. Figure
5.1(b) illustrates the use of HAVING and displays the result of Q26.

Query 27. For each project, retrieve the project number, the project name, and
the number of employees from department 5 who work on the project.

Q27:  SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE Pnumber=Pno AND Ssn=Essn AND Dno=5
GROUP BY Pnumber, Pname;

Here we restrict the tuples in the relation (and hence the tuples in each group) to
those that satisfy the condition specified in the WHERE clause—namely, that they
work in department number 5. Notice that we must be extra careful when two dif-
ferent conditions apply (one to the aggregate function in the SELECT clause and
another to the function in the HAVING clause). For example, suppose that we want
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to count the tofal number of employees whose salaries exceed $40,000 in each
department, but only for departments where more than five employees work. Here,
the condition (SALARY > 40000) applies only to the COUNT function in the SELECT
clause. Suppose that we write the following incorrect query:

SELECT Dname, COUNT (*)

FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno AND Salary>40000
GROUP BY Dname

HAVING COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five
employees who each earn more than $40,000. The rule is that the WHERE clause is
executed first, to select individual tuples or joined tuples; the HAVING clause is
applied later, to select individual groups of tuples. Hence, the tuples are already
restricted to employees who earn more than $40,000 before the function in the
HAVING clause is applied. One way to write this query correctly is to use a nested
query, as shown in Query 28.

Query 28. For each department that has more than five employees, retrieve
the department number and the number of its employees who are making
more than $40,000.

Q28: SELECT Dnumber, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno AND Salary>40000 AND
( SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)

5.1.9 Discussion and Summary of SOL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two—
SELECT and FROM—are mandatory. The query can span several lines, and is ended
by a semicolon. Query terms are separated by spaces, and parentheses can be used to
group relevant parts of a query in the standard way. The clauses are specified in the
following order, with the clauses between square brackets [ ... ] being optional:

SELECT <attribute and function list>
FROM <table list>

[ WHERE <condition> ]

[ GROUP BY <grouping attribute(s)> ]
[ HAVING <group condition> ]

[ ORDER BY <attribute list> ];

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause
specifies all relations (tables) needed in the query, including joined relations, but
not those in nested queries. The WHERE clause specifies the conditions for selecting
the tuples from these relations, including join conditions if needed. GROUP BY
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specifies grouping attributes, whereas HAVING specifies a condition on the groups
being selected rather than on the individual tuples. The built-in aggregate functions
COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they
can also be applied to all the selected tuples in a query without a GROUP BY clause.
Finally, ORDER BY specifies an order for displaying the result of a query.

In order to formulate queries correctly, it is useful to consider the steps that define
the meaning or semantics of each query. A query is evaluated conceptually* by first
applying the FROM clause (to identify all tables involved in the query or to material-
ize any joined tables), followed by the WHERE clause to select and join tuples, and
then by GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to
sort the query result. If none of the last three clauses (GROUP BY, HAVING, and
ORDER BY) are specified, we can think conceptually of a query as being executed as
follows: For each combination of tuples—one from each of the relations specified in
the FROM clause—evaluate the WHERE clause; if it evaluates to TRUE, place the val-
ues of the attributes specified in the SELECT clause from this tuple combination in
the result of the query. Of course, this is not an efficient way to implement the query
in a real system, and each DBMS has special query optimization routines to decide
on an execution plan that is efficient to execute. We discuss query processing and
optimization in Chapter 19.

In general, there are numerous ways to specify the same query in SQL. This flexibil-
ity in specifying queries has advantages and disadvantages. The main advantage is
that users can choose the technique with which they are most comfortable when
specifying a query. For example, many queries may be specified with join conditions
in the WHERE clause, or by using joined relations in the FROM clause, or with some
form of nested queries and the IN comparison operator. Some users may be more
comfortable with one approach, whereas others may be more comfortable with
another. From the programmer’s and the system’s point of view regarding query
optimization, it is generally preferable to write a query with as little nesting and
implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that this
may confuse the user, who may not know which technique to use to specify particu-
lar types of queries. Another problem is that it may be more efficient to execute a
query specified in one way than the same query specified in an alternative way.
Ideally, this should not be the case: The DBMS should process the same query in the
same way regardless of how the query is specified. But this is quite difficult in prac-
tice, since each DBMS has different methods for processing queries specified in dif-
ferent ways. Thus, an additional burden on the user is to determine which of the
alternative specifications is the most efficient to execute. Ideally, the user should
worry only about specifying the query correctly, whereas the DBMS would deter-
mine how to execute the query efficiently. In practice, however, it helps if the user is
aware of which types of constructs in a query are more expensive to process than
others (see Chapter 20).

“4The actual order of query evaluation is implementation dependent; this is just a way to conceptually
view a query in order to correctly formulate it.
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5.2 Specifying Constraints as Assertions
and Actions as Triggers

In this section, we introduce two additional features of SQL: the CREATE ASSER-
TION statement and the CREATE TRIGGER statement. Section 5.2.1 discusses
CREATE ASSERTION, which can be used to specify additional types of constraints
that are outside the scope of the built-in relational model constraints (primary and
unique keys, entity integrity, and referential integrity) that we presented in Section
3.2. These built-in constraints can be specified within the CREATE TABLE statement
of SQL (see Sections 4.1 and 4.2).

Then in Section 5.2.2 we introduce CREATE TRIGGER, which can be used to specify
automatic actions that the database system will perform when certain events and
conditions occur. This type of functionality is generally referred to as active data-
bases. We only introduce the basics of triggers in this chapter, and present a more
complete discussion of active databases in Section 26.1.

5.2.1 Specifying General Constraints as Assertions in SOL

In SQL, users can specify general constraints—those that do not fall into any of the
categories described in Sections 4.1 and 4.2—via declarative assertions, using the
CREATE ASSERTION statement of the DDL. Each assertion is given a constraint
name and is specified via a condition similar to the WHERE clause of an SQL query.
For example, to specify the constraint that the salary of an employee must not be
greater than the salary of the manager of the department that the employee works for in
SQL, we can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK ( NOT EXISTS ( SELECT *
FROM EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D
WHERE E.Salary>M.Salary
AND E.Dno=D.Dnumber
AND D.Mgr_ssn=M.Ssn ) );

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK,
which is followed by a condition in parentheses that must hold true on every data-
base state for the assertion to be satisfied. The constraint name can be used later to
refer to the constraint or to modify or drop it. The DBMS is responsible for ensur-
ing that the condition is not violated. Any WHERE clause condition can be used, but
many constraints can be specified using the EXISTS and NOT EXISTS style of SQL
conditions. Whenever some tuples in the database cause the condition of an
ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-
straint is satisfied by a database state if no combination of tuples in that database
state violates the constraint.

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT EXISTS
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clause, the assertion will specify that the result of this query must be empty so that
the condition will always be TRUE. Thus, the assertion is violated if the result of the
query is not empty. In the preceding example, the query selects all employees whose
salaries are greater than the salary of the manager of their department. If the result
of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify
constraints on individual attributes and domains (see Section 4.2.1) and on
individual tuples (see Section 4.2.4). A major difference between CREATE ASSER-
TION and the individual domain constraints and tuple constraints is that the
CHECK clauses on individual attributes, domains, and tuples are checked in SQL
only when tuples are inserted or updated. Hence, constraint checking can be imple-
mented more efficiently by the DBMS in these cases. The schema designer should
use CHECK on attributes, domains, and tuples only when he or she is sure that the
constraint can only be violated by insertion or updating of tuples. On the other hand,
the schema designer should use CREATE ASSERTION only in cases where it is not
possible to use CHECK on attributes, domains, or tuples, so that simple checks are
implemented more efficiently by the DBMS.

5.2.2 Introduction to Triggers in SOL

Another important statement in SQL is CREATE TRIGGER. In many cases it is con-
venient to specify the type of action to be taken when certain events occur and when
certain conditions are satisfied. For example, it may be useful to specify a condition
that, if violated, causes some user to be informed of the violation. A manager may
want to be informed if an employee’s travel expenses exceed a certain limit by
receiving a message whenever this occurs. The action that the DBMS must take in
this case is to send an appropriate message to that user. The condition is thus used to
monitor the database. Other actions may be specified, such as executing a specific
stored procedure or triggering other updates. The CREATE TRIGGER statement is
used to implement such actions in SQL. We discuss triggers in detail in Section 26.1
when we describe active databases. Here we just give a simple example of how trig-
gers may be used.

Suppose we want to check whenever an employee’s salary is greater than the salary
of his or her direct supervisor in the COMPANY database (see Figures 3.5 and 3.6).
Several events can trigger this rule: inserting a new employee record, changing an
employee’s salary, or changing an employee’s supervisor. Suppose that the action to
take would be to call an external stored procedure SALARY_VIOLATION,” which will
notify the supervisor. The trigger could then be written as in R5 below. Here we are
using the syntax of the Oracle database system.

R5: CREATE TRIGGER SALARY_VIOLATION
BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
ON EMPLOYEE

5Assuming that an appropriate external procedure has been declared. We discuss stored procedures in
Chapter 13.
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FOR EACH ROW
WHEN ( NEW.SALARY > ( SELECT SALARY FROM EMPLOYEE
WHERE SSN = NEW.SUPERVISOR_SSN ) )
INFORM_SUPERVISOR(NEW.Supervisor_ssn,
NEW.Ssn );

The trigger is given the name SALARY_VIOLATION, which can be used to remove or
deactivate the trigger later. A typical trigger has three components:

1. The event(s): These are usually database update operations that are explicitly
applied to the database. In this example the events are: inserting a new
employee record, changing an employee’s salary, or changing an employee’s
supervisor. The person who writes the trigger must make sure that all possi-
ble events are accounted for. In some cases, it may be necessary to write more
than one trigger to cover all possible cases. These events are specified after
the keyword BEFORE in our example, which means that the trigger should
be executed before the triggering operation is executed. An alternative is to
use the keyword AFTER, which specifies that the trigger should be executed
after the operation specified in the event is completed.

2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event
occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed. The condition is specified in the
WHEN clause of the trigger.

3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed. In this example, the action is to execute the stored
procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consis-
tency, monitoring database updates, and updating derived data automatically. A
more complete discussion is given in Section 26.1.

5.3 Views (Virtual Tables) in SQL

In this section we introduce the concept of a view in SQL. We show how views are
specified, and then we discuss the problem of updating views and how views can be
implemented by the DBMS.

5.3.1 Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables.® These
other tables can be base tables or previously defined views. A view does not necessarily

6As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2,
since a user view would possibly include many relations.
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exist in physical form; it is considered to be a virtual table, in contrast to base tables,
whose tuples are always physically stored in the database. This limits the possible
update operations that can be applied to views, but it does not provide any limitations
on querying a view.

We can think of a view as a way of specifying a table that we need to reference fre-
quently, even though it may not exist physically. For example, referring to the
COMPANY database in Figure 3.5 we may frequently issue queries that retrieve the
employee name and the project names that the employee works on. Rather than
having to specify the join of the three tables EMPLOYEE, WORKS_ON, and PROJECT
every time we issue this query, we can define a view that is specified as the result of
these joins. Then we can issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three tables. We call
the EMPLOYEE, WORKS_ON, and PROJECT tables the defining tables of the view.

5.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (vir-
tual) table name (or view name), a list of attribute names, and a query to specify the
contents of the view. If none of the view attributes results from applying functions
or arithmetic operations, we do not have to specify new attribute names for the
view, since they would be the same as the names of the attributes of the defining
tables in the default case. The views in V1 and V2 create virtual tables whose schemas
are illustrated in Figure 5.2 when applied to the database schema of Figure 3.5.

Vi: CREATE VIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber;
V2: CREATE VIEW  DEPT_INFO(Dept_name, No_of_emps, Total_sal)
AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE

WHERE Dnumber=Dno
GROUP BY Dname;

In V1, we did not specify any new attribute names for the view WORKS_ON1
(although we could have); in this case, WORKS_ONT1 inherits the names of the view
attributes from the defining tables EMPLOYEE, PROJECT, and WORKS_ON. View V2

Figure 5.2 WORKS_ON1
Two views specified on ‘ Fname | Lname | Pname | Hours ‘
the database schema of
Figure 3.5.
DEPT_INFO

| Dept_name | No_of_emps | Total_sal |
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explicitly specifies new attribute names for the view DEPT_INFO, using a one-to-one
correspondence between the attributes specified in the CREATE VIEW clause and
those specified in the SELECT clause of the query that defines the view.

We can now specify SQL queries on a view—or virtual table—in the same way we
specify queries involving base tables. For example, to retrieve the last name and first
name of all employees who work on the ‘ProductX’ project, we can utilize the
WORKS_ON1 view and specify the query as in QV1:

Qvi: SELECT Fname, Lname
FROM WORKS_ON1
WHERE Pname=‘ProductX’;

The same query would require the specification of two joins if specified on the base
relations directly; one of the main advantages of a view is to simplify the specifica-
tion of certain queries. Views are also used as a security and authorization mecha-
nism (see Chapter 24).

A view is supposed to be always up-to-date; if we modify the tuples in the base tables
on which the view is defined, the view must automatically reflect these changes.
Hence, the view is not realized or materialized at the time of view definition but
rather at the time when we specify a query on the view. It is the responsibility of the
DBMS and not the user to make sure that the view is kept up-to-date. We will discuss
various ways the DBMS can apply to keep a view up-to-date in the next subsection.

If we do not need a view any more, we can use the DROP VIEW command to dispose
of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

ViA: DROP VIEW WORKS_ONT1;

5.3.3 View Implementation, View Update,
and Inline Views

The problem of efficiently implementing a view for querying is complex. Two main
approaches have been suggested. One strategy, called query modification, involves
modifying or transforming the view query (submitted by the user) into a query on
the underlying base tables. For example, the query QV1 would be automatically
modified to the following query by the DBMS:

SELECT Fname, Lname
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber

AND Pname=‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via com-
plex queries that are time-consuming to execute, especially if multiple queries are
going to be applied to the same view within a short period of time. The second
strategy, called view materialization, involves physically creating a temporary view
table when the view is first queried and keeping that table on the assumption that
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other queries on the view will follow. In this case, an efficient strategy for automati-
cally updating the view table when the base tables are updated must be developed in
order to keep the view up-to-date. Techniques using the concept of incremental
update have been developed for this purpose, where the DBMS can determine what
new tuples must be inserted, deleted, or modified in a materialized view table when
a database update is applied to one of the defining base tables. The view is generally
kept as a materialized (physically stored) table as long as it is being queried. If the
view is not queried for a certain period of time, the system may then automatically
remove the physical table and recompute it from scratch when future queries refer-
ence the view.

Updating of views is complicated and can be ambiguous. In general, an update on a
view defined on a single table without any aggregate functions can be mapped to an
update on the underlying base table under certain conditions. For a view involving
joins, an update operation may be mapped to update operations on the underlying
base relations in multiple ways. Hence, it is often not possible for the DBMS to
determine which of the updates is intended. To illustrate potential problems with
updating a view defined on multiple tables, consider the WORKS_ON1 view, and
suppose that we issue the command to update the PNAME attribute of ‘John Smith’
from ‘ProductX’ to ‘ProductY’. This view update is shown in UV1:

uvi: UPDATEWORKS_ONI1
SET Pname = ‘ProductY’
WHERE Lname="‘Smith’ AND Fname="‘John’
AND Pname=‘ProductX’;

This query can be mapped into several updates on the base relations to give the
desired update effect on the view. In addition, some of these updates will create
additional side effects that affect the result of other queries. For example, here are
two possible updates, (a) and (b), on the base relations corresponding to the view
update operation in UV1:

(a): UPDATEWORKS_ON
SET Pno= (SELECT Pnumber
FROM PROJECT
WHERE  Pname=‘ProductY’)
WHERE Essn IN ( SELECT Ssn
FROM EMPLOYEE
WHERE  Lname=‘Smith’ AND Fname=‘John’ )
AND
Pno= (SELECT Pnumber
FROM PROJECT
WHERE  Pname=‘ProductX’ );

(b): UPDATEPROJECT SET Pname = ‘ProductY’
WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the
‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b)
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would also give the desired update effect on the view, but it accomplishes this by
changing the name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY” It
is quite unlikely that the user who specified the view update UV1 wants the update
to be interpreted as in (b), since it also has the side effect of changing all the view
tuples with Pname = ‘ProductX.

Some view updates may not make much sense; for example, modifying the Total_sal
attribute of the DEPT_INFO view does not make sense because Total_sal is defined to
be the sum of the individual employee salaries. This request is shown as UV2:

uv2: UPDATEDEPT_INFO
SET Total_sal=100000
WHERE Dname="‘Research’;

A large number of updates on the underlying base relations can satisfy this view
update.

Generally, a view update is feasible when only one possible update on the base rela-
tions can accomplish the desired update effect on the view. Whenever an update on
the view can be mapped to more than one update on the underlying base relations,
we must have a certain procedure for choosing one of the possible updates as the
most likely one. Some researchers have developed methods for choosing the most
likely update, while other researchers prefer to have the user choose the desired
update mapping during view definition.

In summary, we can make the following observations:

B A view with a single defining table is updatable if the view attributes contain
the primary key of the base relation, as well as all attributes with the NOT
NULL constraint that do not have default values specified.

® Views defined on multiple tables using joins are generally not updatable.

B Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION must be added at the end of the view defi-
nition if a view is to be updated. This allows the system to check for view updatabil-
ity and to plan an execution strategy for view updates.

It is also possible to define a view table in the FROM clause of an SQL query. This is
known as an in-line view. In this case, the view is defined within the query itself.

5.4 Schema Change Statements in SQL

In this section, we give an overview of the schema evolution commands available in
SQL, which can be used to alter a schema by adding or dropping tables, attributes,
constraints, and other schema elements. This can be done while the database is
operational and does not require recompilation of the database schema. Certain
checks must be done by the DBMS to ensure that the changes do not affect the rest
of the database and make it inconsistent.
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5.4.1 The DROP Command

The DROP command can be used to drop named schema elements, such as tables,
domains, or constraints. One can also drop a schema. For example, if a whole
schema is no longer needed, the DROP SCHEMA command can be used. There are
two drop behavior options: CASCADE and RESTRICT. For example, to remove the
COMPANY database schema and all its tables, domains, and other elements, the
CASCADE option is used as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only
if it has no elements in it; otherwise, the DROP command will not be executed. To
use the RESTRICT option, the user must first individually drop each element in the
schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition
can be deleted by using the DROP TABLE command. For example, if we no longer
wish to keep track of dependents of employees in the COMPANY database of Figure
4.1, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it
is not referenced in any constraints (for example, by foreign key definitions in
another relation) or views (see Section 5.3) or by any other elements. With the
CASCADE option, all such constraints, views, and other elements that reference the
table being dropped are also dropped automatically from the schema, along with
the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table if
successful, but also removes the table definition from the catalog. If it is desired to
delete only the records but to leave the table definition for future use, then the
DELETE command (see Section 4.4.2) should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema ele-
ments, such as constraints or domains.

5.4.2 The ALTER Command

The definition of a base table or of other named schema elements can be changed by
using the ALTER command. For base tables, the possible alter table actions include
adding or dropping a column (attribute), changing a column definition, and adding
or dropping table constraints. For example, to add an attribute for keeping track of
jobs of employees to the EMPLOYEE base relation in the COMPANY schema (see
Figure 4.1), we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

We must still enter a value for the new attribute Job for each individual EMPLOYEE
tuple. This can be done either by specifying a default clause or by using the UPDATE
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command individually on each tuple (see Section 4.4.3). If no default clause is spec-
ified, the new attribute will have NULLs in all the tuples of the relation immediately
after the command is executed; hence, the NOT NULL constraint is not allowed in this
case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behav-
ior. If CASCADE is chosen, all constraints and views that reference the column are
dropped automatically from the schema, along with the column. If RESTRICT is
chosen, the command is successful only if no views or constraints (or other schema
elements) reference the column. For example, the following command removes the
attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
SET DEFAULT ‘333445555’;

One can also change the constraints specified on a table by adding or dropping a
named constraint. To be dropped, a constraint must have been given a name when
it was specified. For example, to drop the constraint named EMPSUPERFK in Figure
4.2 from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new con-
straint to the relation, if needed. This is specified by using the ADD keyword in the
ALTER TABLE statement followed by the new constraint, which can be named or
unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of
SQL. It is also possible to create new tables and views within a database schema
using the appropriate commands. There are many other details and options; we
refer the interested reader to the SQL documents listed in the Selected Bibliography
at the end of this chapter.

5.5 Summary

In this chapter we presented additional features of the SQL database language. We
started in Section 5.1 by presenting more complex features of SQL retrieval queries,
including nested queries, joined tables, outer joins, aggregate functions, and group-
ing. In Section 5.2, we described the CREATE ASSERTION statement, which allows
the specification of more general constraints on the database, and introduced the
concept of triggers and the CREATE TRIGGER statement. Then, in Section 5.3, we
described the SQL facility for defining views on the database. Views are also called
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virtual or derived tables because they present the user with what appear to be tables;
however, the information in those tables is derived from previously defined tables.
Section 5.4 introduced the SQL ALTER TABLE statement, which is used for modify-
ing the database tables and constraints.

Table 5.2 summarizes the syntax (or structure) of various SQL statements. This sum-
mary is not meant to be comprehensive or to describe every possible SQL construct;
rather, it is meant to serve as a quick reference to the major types of constructs avail-
able in SQL. We use BNF notation, where nonterminal symbols are shown in angled
brackets <...>, optional parts are shown in square brackets [...], repetitions are shown
in braces {...}, and alternatives are shown in parentheses (... | ... | ...).”

Table 5.2 Summary of SQL Syntax

CREATE TABLE <table name> ( <column name> <column type> [ <attribute constraint> ]
{, <column name> <column type> [ <attribute constraint> ] }
[ <table constraint> { , <table constraint> } ] )

DROP TABLE <table name>
ALTER TABLE <table name> ADD <column name> <column type>

SELECT [ DISTINCT ] <attribute list>

FROM ( <table name> { <alias> } | <joined table> ) {, ( <table name> { <alias> } | <joined table> ) }
[ WHERE <condition> ]

[ GROUP BY <grouping attributes> [ HAVING <group selection condition> ] ]

[ ORDER BY <column name> [ <order>] { , <column name> [ <order>1] } 1]

<attribute list> ::= ( * | ( <column name> | <function> ( ( [ DISTINCT ] <column name> | *) ) )
{, ( <column name> | <function> ( ( [ DISTINCT] <column name>|*))}))

<grouping attributes> ::= <column name> { , <column name> }
<order> ::= (ASC | DESC)

INSERT INTO <table name> [ ( <column name> {, <column name> } ) ]
( VALUES ( <constant value> , { <constant value> } ) {, ( <constant value> { , <constant value>} ) }
| <select statement> )

DELETE FROM <table name>
[ WHERE <selection condition> ]

UPDATE <table name>
SET <column name> = <value expression> { , <column name> = <value expression> }
[ WHERE <selection condition> ]

CREATE [ UNIQUE] INDEX <index name>
ON <table name> ( <column name> [ <order> ] {, <column name> [ <order>] } )
[ CLUSTER]

DROP INDEX <index name>

CREATE VIEW <view name> [ ( <column name> { , <column name> } ) ]
AS <select statement>

DROP VIEW <view name>

NOTE: The commands for creating and dropping indexes are not part of standard SQL.

"The full syntax of SQL is described in many voluminous documents of hundreds of pages.



Review Questions

5.1.

5.2,

5.3.

5.4.

Describe the six clauses in the syntax of an SQL retrieval query. Show what
type of constructs can be specified in each of the six clauses. Which of the six
clauses are required and which are optional?

Describe conceptually how an SQL retrieval query will be executed by speci-
fying the conceptual order of executing each of the six clauses.

Discuss how NULLs are treated in comparison operators in SQL. How are
NULLs treated when aggregate functions are applied in an SQL query? How
are NULLs treated if they exist in grouping attributes?

Discuss how each of the following constructs is used in SQL, and discuss the
various options for each construct. Specify what each construct is useful for.

a. Nested queries.

o

. Joined tables and outer joins.

. Aggregate functions and grouping.

o 0O

. Triggers.

0]

. Assertions and how they differ from triggers.
f. Views and their updatability.

g. Schema change commands.

Exercises

5.5.

5.6.

5.7.

Specify the following queries on the database in Figure 3.5 in SQL. Show the
query results if each query is applied to the database in Figure 3.6.

a. For each department whose average employee salary is more than
$30,000, retrieve the department name and the number of employees
working for that department.

b. Suppose that we want the number of male employees in each department
making more than $30,000, rather than all employees (as in Exercise
5.4a). Can we specify this query in SQL? Why or why not?

Specify the following queries in SQL on the database schema in Figure 1.2.

a. Retrieve the names and major departments of all straight-A students
(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not
have a grade of A in any of their courses.

In SQL, specify the following queries on the database in Figure 3.5 using the
concept of nested queries and concepts described in this chapter.

a. Retrieve the names of all employees who work in the department that has
the employee with the highest salary among all employees.

b. Retrieve the names of all employees whose supervisor’s supervisor has
888665555 for Ssn.

Exercises

141



142

Chapter 5 More SQL: Complex Queries, Triggers, Views, and Schema Modification

c. Retrieve the names of employees who make at least $10,000 more than

the employee who is paid the least in the company.

5.8. Specify the following views in SQL on the COMPANY database schema

shown in Figure 3.5.

a. A view that has the department name, manager name, and manager

salary for every department.

b. A view that has the employee name, supervisor name, and employee
salary for each employee who works in the ‘Research’ department.

c. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each

project.

d. A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each

project with more than one employee working on it.

5.9. Consider the following view, DEPT_SUMMARY, defined on the COMPANY

database in Figure 3.6:

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s)
AS SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary)

FROM EMPLOYEE
GROUP BY Dno;

State which of the following queries and updates would be allowed on the
view. If a query or update would be allowed, show what the corresponding
query or update on the base relations would look like, and give its result

when applied to the database in Figure 3.6.

a. SELECT ~*
FROM DEPT_SUMMARY;

b. SELECT D,C
FROM DEPT_SUMMARY
WHERE TOTAL_S > 100000;

c. SELECT D, AVERAGE_S
FROM DEPT_SUMMARY

WHERE C > ( SELECT C FROM DEPT_SUMMARY WHERE D=4);

d. UPDATE DEPT_SUMMARY
SET D=3
WHERE D=4;

e. DELETE FROM DEPT_SUMMARY
WHERE C>4;
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chapter ¢)

The Relational Algebra and
Relational Calculus

n this chapter we discuss the two formal languages for

the relational model: the relational algebra and the
relational calculus. In contrast, Chapters 4 and 5 described the practical language for
the relational model, namely the SQL standard. Historically, the relational algebra
and calculus were developed before the SQL language. In fact, in some ways, SQL is
based on concepts from both the algebra and the calculus, as we shall see. Because
most relational DBMSs use SQL as their language, we presented the SQL language
first.

Recall from Chapter 2 that a data model must include a set of operations to manip-
ulate the database, in addition to the data model’s concepts for defining the data-
base’s structure and constraints. We presented the structures and constraints of the
formal relational model in Chapter 3. The basic set of operations for the relational
model is the relational algebra. These operations enable a user to specify basic
retrieval requests as relational algebra expressions. The result of a retrieval is a new
relation, which may have been formed from one or more relations. The algebra
operations thus produce new relations, which can be further manipulated using
operations of the same algebra. A sequence of relational algebra operations forms a
relational algebra expression, whose result will also be a relation that represents
the result of a database query (or retrieval request).

The relational algebra is very important for several reasons. First, it provides a for-
mal foundation for relational model operations. Second, and perhaps more impor-
tant, it is used as a basis for implementing and optimizing queries in the query
processing and optimization modules that are integral parts of relational database
management systems (RDBMSs), as we shall discuss in Chapter 19. Third, some of
its concepts are incorporated into the SQL standard query language for RDBMSs.
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Although most commercial RDBMSs in use today do not provide user interfaces for
relational algebra queries, the core operations and functions in the internal modules
of most relational systems are based on relational algebra operations. We will define
these operations in detail in Sections 6.1 through 6.4 of this chapter.

Whereas the algebra defines a set of operations for the relational model, the
relational calculus provides a higher-level declarative language for specifying rela-
tional queries. A relational calculus expression creates a new relation. In a relational
calculus expression, there is no order of operations to specify how to retrieve the
query result—only what information the result should contain. This is the main
distinguishing feature between relational algebra and relational calculus. The rela-
tional calculus is important because it has a firm basis in mathematical logic and
because the standard query language (SQL) for RDBMSs has some of its founda-
tions in a variation of relational calculus known as the tuple relational calculus.!

The relational algebra is often considered to be an integral part of the relational data
model. Its operations can be divided into two groups. One group includes set oper-
ations from mathematical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model (see Section 3.1). Set
operations include UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN
PRODUCT (also known as CROSS PRODUCT). The other group consists of opera-
tions developed specifically for relational databases—these include SELECT,
PROIJECT, and JOIN, among others. First, we describe the SELECT and PROJECT
operations in Section 6.1 because they are unary operations that operate on single
relations. Then we discuss set operations in Section 6.2. In Section 6.3, we discuss
JOIN and other complex binary operations, which operate on two tables by com-
bining related tuples (records) based on join conditions. The COMPANY relational
database shown in Figure 3.6 is used for our examples.

Some common database requests cannot be performed with the original relational
algebra operations, so additional operations were created to express these requests.
These include aggregate functions, which are operations that can summarize data
from the tables, as well as additional types of JOIN and UNION operations, known as
OUTER JOINs and OUTER UNIONSs. These operations, which were added to the orig-
inal relational algebra because of their importance to many database applications,
are described in Section 6.4. We give examples of specifying queries that use rela-
tional operations in Section 6.5. Some of these same queries were used in Chapters
4 and 5. By using the same query numbers in this chapter, the reader can contrast
how the same queries are written in the various query languages.

In Sections 6.6 and 6.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus.
The tuple relational calculus is described in Section 6.6 and the domain relational
calculus is described in Section 6.7. Some of the SQL constructs discussed in
Chapters 4 and 5 are based on the tuple relational calculus. The relational calculus is
a formal language, based on the branch of mathematical logic called predicate cal-

1SQL is based on tuple relational calculus, but also incorporates some of the operations from the rela-
tional algebra and its extensions, as illustrated in Chapters 4, 5, and 9.
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culus.? In tuple relational calculus, variables range over tuples, whereas in domain
relational calculus, variables range over the domains (values) of attributes. In
Appendix C we give an overview of the Query-By-Example (QBE) language, which
is a graphical user-friendly relational language based on domain relational calculus.
Section 6.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational
languages, Sections 6.4, 6.6, and 6.7 may be skipped.

6.1 Unary Relational Operations:
SELECT and PROJECT

6.1.1 The SELECT Operation

The SELECT operation is used to choose a subset of the tuples from a relation that
satisfies a selection condition.’ One can consider the SELECT operation to be a
filter that keeps only those tuples that satisfy a qualifying condition. Alternatively,
we can consider the SELECT operation to restrict the tuples in a relation to only
those tuples that satisfy the condition. The SELECT operation can also be visualized
as a horizontal partition of the relation into two sets of tuples—those tuples that sat-
isfy the condition and are selected, and those tuples that do not satisfy the condition
and are discarded. For example, to select the EMPLOYEE tuples whose department is
4, or those whose salary is greater than $30,000, we can individually specify each of
these two conditions with a SELECT operation as follows:

Opno—s(EMPLOYEE)
OSalary>30000 (EMPLOYEE)

In general, the SELECT operation is denoted by

G<selecti0n condition>(R)

where the symbol ¢ (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression (condition) specified on the attributes of
relation R. Notice that R is generally a relational algebra expression whose result is a
relation—the simplest such expression is just the name of a database relation. The
relation resulting from the SELECT operation has the same attributes as R.

The Boolean expression specified in <selection condition> is made up of a number
of clauses of the form

<attribute name> <comparison op> <constant value>
or

<attribute name> <comparison op> <attribute name>

2In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables
and values—is assumed.

3The SELECT operation is different from the SELECT clause of SQL. The SELECT operation chooses
tuples from a table, and is sometimes called a RESTRICT or FILTER operation.
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where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, <, >, >, #}, and <constant value> is a constant value
from the attribute domain. Clauses can be connected by the standard Boolean oper-
ators and, or, and not to form a general selection condition. For example, to select
the tuples for all employees who either work in department 4 and make over
$25,000 per year, or work in department 5 and make over $30,000, we can specify
the following SELECT operation:

G(Dno:4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EM PLOYEE)

The result is shown in Figure 6.1(a).

Notice that all the comparison operators in the set {=, <, <, >, 2, #} can apply to
attributes whose domains are ordered values, such as numeric or date domains.
Domains of strings of characters are also considered to be ordered based on the col-
lating sequence of the characters. If the domain of an attribute is a set of unordered
values, then only the comparison operators in the set {=, #} can be used. An exam-
ple of an unordered domain is the domain Color = { ‘red;, ‘blue’, ‘green,, ‘white, ‘vel-
low’, ...}, where no order is specified among the various colors. Some domains allow
additional types of comparison operators; for example, a domain of character
strings may allow the comparison operator SUBSTRING_OF.

In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each individual tuple t in R. This
is done by substituting each occurrence of an attribute A; in the selection condition
with its value in the tuple #[A.]. If the condition evaluates to TRUE, then tuple ¢ is

Figure 6.1

Results of SELECT and PROJECT operations. (a) O(Dro—4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).
(b) nLname, Fname, Salary(EMPLOYEE)' (C) nSex, Salary(EM PLOYE E)'

@

Fname | Minit Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 888665555 | 5
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F 43000 | 888665555
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M | 38000 [333445555| 5
(b) (©

Lname Fname Salary Sex | Salary

Smith John 30000 M | 30000

Wong Franklin | 40000 M | 40000

Zelaya Alicia 25000 F 25000

Wallace | Jennifer | 43000 F 43000

Narayan | Ramesh | 38000 M | 38000

English | Joyce 25000 M | 25000

Jabbar Ahmad 25000 M | 55000

Borg James 55000
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selected. All the selected tuples appear in the result of the SELECT operation. The
Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

®m (condl AND cond2) is TRUE if both (condl) and (cond2) are TRUE; other-
wise, it is FALSE.

B (condl OR cond2) is TRUE if either (condl) or (cond2) or both are TRUE;
otherwise, it is FALSE.

®m (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover,
the selection operation is applied to each tuple individually; hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting from
a SELECT operation—its number of attributes—is the same as the degree of R. The
number of tuples in the resulting relation is always less than or equal to the number
of tuples in R. That is, |6, (R)| < |R| for any condition C. The fraction of tuples
selected by a selection condition is referred to as the selectivity of the condition.

Notice that the SELECT operation is commutative; that is,

G<c0nd1>(c<cond2>(R)) = G<cond2>(6<condl>(R))

Hence, a sequence of SELECTs can be applied in any order. In addition, we can
always combine a cascade (or sequence) of SELECT operations into a single
SELECT operation with a conjunctive (AND) condition; that is,

G<c0nd1>(c<cond2>(“' (G<condn>(R)) )) = G<cond1> AND<cond2> AND...AND <c0ndn>(R)

In SQL, the SELECT condition is typically specified in the WHERE clause of a query.
For example, the following operation:

ODno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *
FROM EMPLOYEE
WHERE Dno=4 AND Salary>25000;

6.1.2 The PROJECT Operation

If we think of a relation as a table, the SELECT operation chooses some of the rows
from the table while discarding other rows. The PROJECT operation, on the other
hand, selects certain colummns from the table and discards the other columns. If we are
interested in only certain attributes of a relation, we use the PROJECT operation to
project the relation over these attributes only. Therefore, the result of the PROJECT
operation can be visualized as a vertical partition of the relation into two relations:
one has the needed columns (attributes) and contains the result of the operation,
and the other contains the discarded columns. For example, to list each employee’s
first and last name and salary, we can use the PROJECT operation as follows:

EMPLOYEE)

71-’Lname, Fname, Salary(
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The resulting relation is shown in Figure 6.1(b). The general form of the PROJECT
operation is

n<attribute list> (R)

where 7 (pi) is the symbol used to represent the PROJECT operation, and <attribute
list> is the desired sublist of attributes from the attributes of relation R. Again,
notice that R is, in general, a relational algebra expression whose result is a relation,
which in the simplest case is just the name of a database relation. The result of the
PROJECT operation has only the attributes specified in <attribute list> in the same
order as they appear in the list. Hence, its degree is equal to the number of attributes
in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The PROJECT operation removes any duplicate tuples, so the result of the
PROJECT operation is a set of distinct tuples, and hence a valid relation. This is
known as duplicate elimination. For example, consider the following PROJECT
operation:

TSex, Salary(EM PLOYEE)

The result is shown in Figure 6.1(c). Notice that the tuple <‘F, 25000> appears only
once in Figure 6.1(c), even though this combination of values appears twice in the
EMPLOYEE relation. Duplicate elimination involves sorting or some other tech-
nique to detect duplicates and thus adds more processing. If duplicates are not elim-
inated, the result would be a multiset or bag of tuples rather than a set. This was not
permitted in the formal relational model, but is allowed in SQL (see Section 4.3).

The number of tuples in a relation resulting from a PROJECT operation is always
less than or equal to the number of tuples in R. If the projection list is a superkey of
R—that is, it includes some key of R—the resulting relation has the same number of
tuples as R. Moreover,

T ist1> (n<list2>(R)) = n<list1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is
an incorrect expression. It is also noteworthy that commutativity does not hold on
PROJECT.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For
example, the following operation:

Tsex, Satary(EMPLOYEE)
would correspond to the following SQL query:

SELECT DISTINCT Sex, Salary
FROM EMPLOYEE

Notice that if we remove the keyword DISTINCT from this SQL query, then dupli-
cates will not be eliminated. This option is not available in the formal relational
algebra.
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6.1.3 Sequences of Operations and the RENAME Operation

The relations shown in Figure 6.1 that depict operation results do not have any
names. In general, for most queries, we need to apply several relational algebra
operations one after the other. Either we can write the operations as a single
relational algebra expression by nesting the operations, or we can apply one oper-
ation at a time and create intermediate result relations. In the latter case, we must
give names to the relations that hold the intermediate results. For example, to
retrieve the first name, last name, and salary of all employees who work in depart-
ment number 5, we must apply a SELECT and a PROJECT operation. We can write a
single relational algebra expression, also known as an in-line expression, as follows:

(Oppe_s(EMPLOYEE))

nFname, Lname, Salary

Figure 6.2(a) shows the result of this in-line relational algebra expression.
Alternatively, we can explicitly show the sequence of operations, giving a name to
each intermediate relation, as follows:

DEP5_EMPS < o,,_;(EMPLOYEE)
RESULT ¢~ Ttg, e L name, Satary(DEPS_EMPS)

It is sometimes simpler to break down a complex sequence of operations by specify-
ing intermediate result relations than to write a single relational algebra expression.
We can also use this technique to rename the attributes in the intermediate and

@a) Figure 6.2
Fname | Lname | Salary Results of a sequence of operations. (2) Tt e [ name, Salary
John Smith | 30000 (6pnoes(EMPLOYEE)). (b) Using intermediate relations
Franklin | Wong | 40000 and renaming of attributes.

Ramesh | Narayan | 38000
Joyce English | 25000

(b)

TEMP

Fname | Minit | Lname Ssn. Bdate Address Sex | Salary | Super_ssn |Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | M 30000 |333445555 | 5
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston,TX M | 40000 |888665555 | 5
Ramesh K Narayan | 666884444 | 1962-09-15 [ 975 Fire Oak, Humble,TX | M | 38000 |333445555 | 5
Joyce A English | 453453453 | 1972-07-31 5631 Rice, Houston, TX F 25000 (333445555 | 5
R

First_ name | Last_name | Salary

John Smith 30000

Franklin Wong 40000

Ramesh Narayan 38000
Joyce English 25000
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result relations. This can be useful in connection with more complex operations
such as UNION and JOIN, as we shall see. To rename the attributes in a relation, we
simply list the new attribute names in parentheses, as in the following example:

TEMP < o,,_(EMPLOYEE)
R(First_name, Last_name, Salary) <=m o | oo Salary(TEMP)

These two operations are illustrated in Figure 6.2(b).

If no renaming is applied, the names of the attributes in the resulting relation of a
SELECT operation are the same as those in the original relation and in the same
order. For a PROJECT operation with no renaming, the resulting relation has the
same attribute names as those in the projection list and in the same order in which
they appear in the list.

We can also define a formal RENAME operation—which can rename either the rela-
tion name or the attribute names, or both—as a unary operator. The general
RENAME operation when applied to a relation R of degree n is denoted by any of the
following three forms:

pS(Bl,BZ,...,Bn)(R) or ps(R) or p(Bl,BZ,...,Bn)(R)

where the symbol p (rho) is used to denote the RENAME operator, S is the new rela-
tion name, and By, B,, ..., B, are the new attribute names. The first expression
renames both the relation and its attributes, the second renames the relation only,
and the third renames the attributes only. If the attributes of Rare (A}, A,, ..., A, ) in
that order, then each A, is renamed as B,.

In SQL, a single query typically represents a complex relational algebra expression.
Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

6.2 Relational Algebra Operations
from Set Theory

6.2.1 The UNION, INTERSECTION, and MINUS Operations

The next group of relational algebra operations are the standard mathematical
operations on sets. For example, to retrieve the Social Security numbers of all
employees who either work in department 5 or directly supervise an employee who
works in department 5, we can use the UNION operation as follows:*

4As a single relational algebra expression, this becomes Result ¢—mg, (Opnoes (EMPLOYEE) ) U
(Gppy.s (EMPLOYEE))

nSupeLssn
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DEP5_EMPS < o, _,(EMPLOYEE)
RESULT1 < ng,, (DEP5_EMPS)
RESULT2(Ssn) ¢~ T, , oon(DEPS_EMPS)
RESULT <~ RESULT1 U RESULT2

The relation RESULT1 has the Ssn of all employees who work in department 5,
whereas RESULT?2 has the Ssn of all employees who directly supervise an employee
who works in department 5. The UNION operation produces the tuples that are in
either RESULT1 or RESULT2 or both (see Figure 6.3), while eliminating any dupli-
cates. Thus, the Ssn value 333445555 appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in vari-
ous ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called
MINUS or EXCEPT). These are binary operations; that is, each is applied to two sets
(of tuples). When these operations are adapted to relational databases, the two rela-
tions on which any of these three operations are applied must have the same type of
tuples; this condition has been called union compatibility or type compatibility. Two
relations R(A,, A, ..., A,) and S(B,, B,, ..., B,) are said to be union compatible (or
type compatible) if they have the same degree n and if dom(A;) = dom(B,) for 1 <i
< n. This means that the two relations have the same number of attributes and each
corresponding pair of attributes has the same domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE
on two union-compatible relations R and S as follows:

B UNION: The result of this operation, denoted by R U S, is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate
tuples are eliminated.

B INTERSECTION: The result of this operation, denoted by R N S, is a relation
that includes all tuples that are in both R and S.

B SET DIFFERENCE (or MINUS): The result of this operation, denoted by
R - S, is a relation that includes all tuples that are in R but not in S.

We will adopt the convention that the resulting relation has the same attribute
names as the first relation R. It is always possible to rename the attributes in the
result using the rename operator.
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RESULT1 RESULT2 RESULT Figure 6.3

Ssn Ssn Ssn Result of the UNION operation
RESULT « RESULT1 U

123456789 333445555 123456789
333445555 888665555 333445555
666884444 666884444
453453453 453453453
888665555

RESULT2.
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Figure 6.4 illustrates the three operations. The relations STUDENT and
INSTRUCTOR in Figure 6.4(a) are union compatible and their tuples represent the
names of students and the names of instructors, respectively. The result of the
UNION operation in Figure 6.4(b) shows the names of all students and instructors.
Note that duplicate tuples appear only once in the result. The result of the
INTERSECTION operation (Figure 6.4(c)) includes only those who are both students
and instructors.

Notice that both UNION and INTERSECTION are commutative operations; that is,
RUS=SUR and RNS=SNR

Both UNION and INTERSECTION can be treated as n-ary operations applicable to
any number of relations because both are also associative operations; that is,

RUSUT)=RUS)UT and (RNS)NT=RN(SNT)
The MINUS operation is not commutative; that is, in general,

R-S#S-R

Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.
(b) STUDENT U INSTRUCTOR. (c) STUDENT N INSTRUCTOR. (d) STUDENT — INSTRUCTOR.
(e) INSTRUCTOR — STUDENT.

(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname (b) Fn Ln
Susan Yao John Smith Susan Yao
Ramesh | Shah Ricardo | Browne Ramesh | Shah
Johnny Kohler Susan Yao Johnny Kohler
Barbara | Jones Francis | Johnson Barbara | Jones
Amy Ford Ramesh | Shah Amy Ford
Jimmy Wang Jimmy Wang
Ernest Gilbert Ernest Gilbert
John Smith
Ricardo | Browne
Francis | Johnson
(© Fn Ln (d) Fn Ln ©) | Frame | Lname
Susan Yao Johnny Kohler John Smith
Ramesh | Shah Barbara | Jones Ricardo | Browne
Amy Ford Francis | Johnson
Jimmy Wang
Ernest Gilbert
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Figure 6.4(d) shows the names of students who are not instructors, and Figure
6.4(e) shows the names of instructors who are not students.

Note that INTERSECTION can be expressed in terms of union and set difference as
follows:

RNnS=(RUS)-(R-5))-(S-R)

In SQL, there are three operations—UNION, INTERSECT, and EXCEPT—that corre-
spond to the set operations described here. In addition, there are multiset opera-
tions (UNION ALL, INTERSECT ALL, and EXCEPT ALL) that do not eliminate
duplicates (see Section 4.3.4).

6.2.2 The CARTESIAN PRODUCT (CROSS PRODUCT)
Operation

Next, we discuss the CARTESIAN PRODUCT operation—also known as CROSS
PRODUCT or CROSS JOIN-which is denoted by . This is also a binary set opera-
tion, but the relations on which it is applied do not have to be union compatible. In
its binary form, this set operation produces a new element by combining every
member (tuple) from one relation (set) with every member (tuple) from the other
relation (set). In general, the result of R(A}, A,, ..., A,) X S(B,, B,, ..., B,) is a rela-
tion Q with degree n + m attributes Q(A,, A,, ..., A, B, B, ..., Bm), in that order.
The resulting relation Q has one tuple for each combination of tuples—one from R
and one from S. Hence, if R has n tuples (denoted as |R| = n), and S has n tuples,
then R X S will have n, * ng tuples.

The n-ary CARTESIAN PRODUCT operation is an extension of the above concept,
which produces new tuples by concatenating all possible combinations of tuples
from n underlying relations.

In general, the CARTESIAN PRODUCT operation applied by itself is generally mean-
ingless. It is mostly useful when followed by a selection that matches values of
attributes coming from the component relations. For example, suppose that we
want to retrieve a list of names of each female employee’s dependents. We can do
this as follows:

FEMALE_EMPS « og,,_-(EMPLOYEE)

EMPNAMES ¢ T, o | name, sen( FEMALE_EMPS)
EMP_DEPENDENTS <~ EMPNAMES x DEPENDENT
ACTUAL_DEPENDENTS « o, _g..,(EMP_DEPENDENTS)
RESULT ¢ e e Lname, Depondent name ACTUAL_DEPENDENTS)

The resulting relations from this sequence of operations are shown in Figure 6.5.
The EMP_DEPENDENTS relation is the result of applying the CARTESIAN PROD-
UCT operation to EMPNAMES from Figure 6.5 with DEPENDENT from Figure 3.6.
In EMP_DEPENDENTS, every tuple from EMPNAMES is combined with every tuple
from DEPENDENT, giving a result that is not very meaningful (every dependent is
combined with every female employee). We want to combine a female employee
tuple only with her particular dependents—namely, the DEPENDENT tuples whose
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Figure 6.5

The Cartesian Product (Cross Product) operation.

FEMALE_EMPS

Fname [Minit | Lname Ssn Bdate Address Sex| Salary| Super_ssn [Dno
Alicia J Zelaya | 999887777 [1968-07-19 | 3321Castle, Spring, TX | F [{25000|987654321
Jennifer | S | Wallace| 987654321 [1941-06-20 | 291Berry, Bellaire, TX 43000(888665555| 4
Joyce A English | 4563453453 |1972-07-31 | 5631 Rice, Houston, TX| F |25000|333445555| 5
EMPNAMES

Fname | Lname Ssn

Alicia Zelaya |999887777

Jennifer | Wallace | 987654321

Joyce | English | 453453453
EMP_DEPENDENTS

Fname | Lname Ssn Essn Dependent_name Sex Bdate

Alicia Zelaya |999887777 | 333445555 Alice F 1986-04-05

Alicia Zelaya | 999887777 | 333445555 Theodore M | 1983-10-25

Alicia Zelaya | 999887777 | 333445555 Joy F 1958-05-03

Alicia Zelaya | 999887777 | 987654321 Abner M | 1942-02-28

Alicia Zelaya | 999887777 | 123456789 Michael M | 1988-01-04

Alicia Zelaya | 999887777 | 123456789 Alice F 1988-12-30

Alicia Zelaya | 999887777 | 123456789 Elizabeth F 1967-05-05

Jennifer | Wallace | 987654321 | 333445555 Alice F | 1986-04-05

Jennifer | Wallace | 987654321 | 333445555 Theodore M | 1983-10-25

Jennifer | Wallace | 987654321 | 333445555 Joy F 1958-05-03

Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28

Jennifer | Wallace | 987654321 | 123456789 Michael M | 1988-01-04

Jennifer | Wallace | 987654321 | 123456789 Alice F 1988-12-30

Jennifer | Wallace | 987654321 | 123456789 Elizabeth F | 1967-05-05

Joyce English | 453453453 | 333445555 Alice F 1986-04-05

Joyce |English | 453453453 | 333445555 Theodore M | 1983-10-25

Joyce English | 453453453 | 333445555 Joy F 1958-05-03

Joyce English | 453453453 | 987654321 Abner M | 1942-02-28

Joyce English | 453453453 | 123456789 Michael M | 1988-01-04

Joyce English | 4563453453 | 123456789 Alice F 1988-12-30

Joyce English | 453453453 | 123456789 Elizabeth F 1967-05-05
ACTUAL_DEPENDENTS

Fname | Lname Ssn Essn Dependent_name | Sex Bdate

Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28
RESULT

Fname | Lname | Dependent_name

Jennifer | Wallace Abner
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Essn value match the Ssn value of the EMPLOYEE tuple. The ACTUAL_DEPENDENTS
relation accomplishes this. The EMP_DEPENDENTS relation is a good example of
the case where relational algebra can be correctly applied to yield results that make
no sense at all. It is the responsibility of the user to make sure to apply only mean-
ingful operations to relations.

The CARTESIAN PRODUCT creates tuples with the combined attributes of two rela-
tions. We can SELECT related tuples only from the two relations by specifying an
appropriate selection condition after the Cartesian product, as we did in the preced-
ing example. Because this sequence of CARTESIAN PRODUCT followed by SELECT
is quite commonly used to combine related tuples from two relations, a special oper-
ation, called JOIN, was created to specify this sequence as a single operation. We dis-
cuss the JOIN operation next.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in
joined tables (see Section 5.1.6). Alternatively, if there are two tables in the WHERE
clause and there is no corresponding join condition in the query, the result will also
be the CARTESIAN PRODUCT of the two tables (see Q10 in Section 4.3.3).

6.3 Binary Relational Operations:
JOIN and DIVISION

6.3.1 The JOIN Operation

The JOIN operation, denoted by ™, is used to combine related tuples from two rela-
tions into single “longer” tuples. This operation is very important for any relational
database with more than a single relation because it allows us to process relation-
ships among relations. To illustrate JOIN, suppose that we want to retrieve the name
of the manager of each department. To get the manager’s name, we need to combine
each department tuple with the employee tuple whose Ssn value matches the
Mgr_ssn value in the department tuple. We do this by using the JOIN operation and
then projecting the result over the necessary attributes, as follows:

DEPT_MGR ¢ DEPARTMENT b\ o EMPLOYEE

RESULT « TBname, Lname, Fname(DEPT_MGR)

The first operation is illustrated in Figure 6.6. Note that Mgr_ssn is a foreign key of
the DEPARTMENT relation that references Ssn, the primary key of the EMPLOYEE
relation. This referential integrity constraint plays a role in having matching tuples
in the referenced relation EMPLOYEE.

The JOIN operation can be specified as a CARTESIAN PRODUCT operation followed
by a SELECT operation. However, JOIN is very important because it is used very fre-
quently when specifying database queries. Consider the earlier example illustrating
CARTESIAN PRODUCT, which included the following sequence of operations:

EMP_DEPENDENTS « EMPNAMES X DEPENDENT
ACTUAL_DEPENDENTS « og_,_¢..,(EMP_DEPENDENTS)
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DEPT_MGR
Dname Dnumber Mgr_ssn e Fname Minit Lname Ssn
Research 5 333445555 T Franklin T Wong 333445555
Administration 4 987654321 T Jennifer S Wallace | 987654321
Headquarters 1 888665555 | - | James E Borg 888665555
Figure 6.6

Result of the JOIN operation DEPT_MGR « DEPARTMENT > EMPLOYEE.

Mgr_ssn=Ssn

These two operations can be replaced with a single JOIN operation as follows:

ACTUAL_DEPENDENTS « EMPNAMES X DEPENDENT

Ssn=Essn

The general form of a JOIN operation on two relations® R(A, A, ..., A,) and S(B,,
B, ...,B )is
2Py

R X

<join condition>

The result of the JOIN is a relation Q with n + m attributes Q(A,, A,, ..., A, B}, B,,
..., B,,) in that order; Q has one tuple for each combination of tuples—one from R
and one from S—whenever the combination satisfies the join condition. This is the
main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combina-
tions of tuples satisfying the join condition appear in the result, whereas in the
CARTESIAN PRODUCT all combinations of tuples are included in the result. The
join condition is specified on attributes from the two relations R and S and is evalu-
ated for each combination of tuples. Each tuple combination for which the join
condition evaluates to TRUE is included in the resulting relation Q as a single com-

bined tuple.
A general join condition is of the form
<condition> AND <condition> AND...AND <condition>

where each <condition> is of the form A, 0 B;, A; is an attribute of R, B ; is an attrib-
ute of S, A; and B; have the same domain, and 0 (theta) is one of the comparison
operators {=, <, <, >, 2, #}. A JOIN operation with such a general join condition is
called a THETA JOIN. Tuples whose join attributes are NULL or for which the join
condition is FALSE do not appear in the result. In that sense, the JOIN operation does
not necessarily preserve all of the information in the participating relations, because
tuples that do not get combined with matching ones in the other relation do not
appear in the result.

5Again, notice that R and S can be any relations that result from general relational algebra expressions.
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6.3.2 Variations of JOIN: The EQUIJOIN
and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons
only. Such a JOIN, where the only comparison operator used is =, is called an
EQUUOIN. Both previous examples were EQUIJOINs. Notice that in the result of an
EQUUOIN we always have one or more pairs of attributes that have identical values
in every tuple. For example, in Figure 6.6, the values of the attributes Mgr_ssn and
Ssn are identical in every tuple of DEPT_MGR (the EQUUOIN result) because the
equality join condition specified on these two attributes requires the values to be
identical in every tuple in the result. Because one of each pair of attributes with
identical values is superfluous, a new operation called NATURAL JOIN—denoted by
+—was created to get rid of the second (superfluous) attribute in an EQUIJOIN con-
dition.® The standard definition of NATURAL JOIN requires that the two join attrib-
utes (or each pair of join attributes) have the same name in both relations. If this is
not the case, a renaming operation is applied first.

Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that
controls the project. In the following example, first we rename the Dnumber attribute
of DEPARTMENT to Dnum—so that it has the same name as the Dnum attribute in
PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT « PROJECT * P DEPARTMENT)

Dname, Dnum, Mgr_ssn, Mgr_start_date)(

The same query can be done in two steps by creating an intermediate table DEPT as
follows:

DEPT « p(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)
PROJ_DEPT «- PROJECT * DEPT

The attribute Dnum is called the join attribute for the NATURAL JOIN operation,
because it is the only attribute with the same name in both relations. The resulting
relation is illustrated in Figure 6.7(a). In the PROJ_DEPT relation, each tuple com-
bines a PROJECT tuple with the DEPARTMENT tuple for the department that con-
trols the project, but only one join attribute value is kept.

If the attributes on which the natural join is specified already have the same names in
both relations, renaming is unnecessary. For example, to apply a natural join on the
Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT_LOCS «— DEPARTMENT * DEPT_LOCATIONS

The resulting relation is shown in Figure 6.7(b), which combines each department
with its locations and has one tuple for each location. In general, the join condition
for NATURAL JOIN is constructed by equating each pair of join attributes that have
the same name in the two relations and combining these conditions with AND.
There can be a list of join attributes from each relation, and each corresponding pair
must have the same name.

BNATURAL JOIN is basically an EQUIJOIN followed by the removal of the superfluous attributes.
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(@
PROJ_DEPT
Pname Pnumber Plocation Dnum Dname Mgr_ssn Mgr_start_date
ProductX 1 Bellaire 5 Research 333445555 1988-05-22
ProductY 2 Sugarland 5 Research 333445555 1988-05-22
ProductZ 3 Houston 5 Research 333445555 1988-05-22
Computerization 10 Stafford 4 Administration | 987654321 1995-01-01
Reorganization 20 Houston 1 Headquarters | 888665555 1981-06-19
Newbenefits 30 Stafford 4 Administration | 987654321 1995-01-01
(b)
DEPT_LOCS
Dname Dnumber Mgr_ssn Mgr_start_date Location
Headquarters 1 888665555 1981-06-19 Houston
Administration 4 987654321 1995-01-01 Stafford
Research 5 333445555 1988-05-22 Bellaire
Research 5 333445555 1988-05-22 Sugarland
Research 5 333445555 1988-05-22 Houston
Figure 6.7

Results of two NATURAL JOIN operations. (a) PROJ_DEPT « PROJECT * DEPT.
(b) DEPT_LOCS « DEPARTMENT * DEPT_LOCATIONS.

A more general, but nonstandard definition for NATURAL JOIN is

Q<R *(<list1>),(<list2>)s

In this case, <list1> specifies a list of 7 attributes from R, and <list2> specifies a list
of i attributes from S. The lists are used to form equality comparison conditions
between pairs of corresponding attributes, and the conditions are then ANDed
together. Only the list corresponding to attributes of the first relation R—<list1>—
is kept in the result Q.

Notice that if no combination of tuples satisfies the join condition, the result of a
JOIN is an empty relation with zero tuples. In general, if R has n, tuples and S has
tuples, the result of a JOIN operation R X <join condition> S will have between zero and
np * ng tuples. The expected size of the join result divided by the maximum size r, *
ng leads to a ratio called join selectivity, which is a property of each join condition.
If there is no join condition, all combinations of tuples qualify and the JOIN degen-
erates into a CARTESIAN PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

As we can see, a single JOIN operation is used to combine data from two relations so
that related information can be presented in a single table. These operations are also
known as inner joins, to distinguish them from a different join variation called
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outer joins (see Section 6.4.4). Informally, an inner join is a type of match and com-
bine operation defined formally as a combination of CARTESIAN PRODUCT and
SELECTION. Note that sometimes a join may be specified between a relation and
itself, as we will illustrate in Section 6.4.3. The NATURAL JOIN or EQUIJOIN opera-
tion can also be specified among multiple tables, leading to an n-way join. For
example, consider the following three-way join:

((PROJECT X DEPARTMENT) EMPLOYEE)

Dnum=Dnumber Mgr_ssn=Ssn

This combines each project tuple with its controlling department tuple into a single
tuple, and then combines that tuple with an employee tuple that is the department
manager. The net result is a consolidated relation in which each tuple contains this
project-department-manager combined information.

In SQL, JOIN can be realized in several different ways. The first method is to specify
the <join conditions> in the WHERE clause, along with any other selection condi-
tions. This is very common, and is illustrated by queries Q1, Q1A, Q1B, Q2, and Q8
in Sections 4.3.1 and 4.3.2, as well as by many other query examples in Chapters 4
and 5. The second way is to use a nested relation, as illustrated by queries Q4A and
Q16 in Section 5.1.2. Another way is to use the concept of joined tables, as illus-
trated by the queries Q1A, Q1B, Q8B, and Q2A in Section 5.1.6. The construct of
joined tables was added to SQL2 to allow the user to specify explicitly all the various
types of joins, because the other methods were more limited. It also allows the user
to clearly distinguish join conditions from the selection conditions in the WHERE
clause.

6.3.3 A Complete Set of Relational Algebra Operations

It has been shown that the set of relational algebra operations {c, T, U, p, —, X} is a
complete set; that is, any of the other original relational algebra operations can be
expressed as a sequence of operations from this set. For example, the INTERSECTION
operation can be expressed by using UNION and MINUS as follows:

RNS=RuUS)-({(R-S)uU(S-R))

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to
specify this complex expression every time we wish to specify an intersection. As
another example, a JOIN operation can be specified as a CARTESIAN PRODUCT fol-
lowed by a SELECT operation, as we discussed:

R M <condition> (R X S)

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various
JOIN operations are also not strictly necessary for the expressive power of the rela-
tional algebra. However, they are important to include as separate operations
because they are convenient to use and are very commonly applied in database
applications. Other operations have been included in the basic relational algebra for
convenience rather than necessity. We discuss one of these—the DIVISION opera-
tion—in the next section.

S= G<C011diti0n>
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6.3.4 The DIVISION Operation

The DIVISION operation, denoted by +, is useful for a special kind of query that
sometimes occurs in database applications. An example is Retrieve the names of
employees who work on all the projects that John Smith’ works on. To express this
query using the DIVISION operation, proceed as follows. First, retrieve the list of
project numbers that ‘John Smith’ works on in the intermediate relation
SMITH_PNOS:

SMITH « GFname:‘]ohn’ AND Lname:‘Smith’(EMPLOYEE)
SMITH_PNOS « m,, (WORKS_ON M SMITH)

Essn=Ssn

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee
whose Ssn is Essn works on the project whose number is Pno in the intermediate
relation SSN_PNOS:

SSN_PNOS « Tz, pno(WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees’ Social Security numbers:

SSNS(Ssn) « SSN_PNOS + SMITH_PNOS
RESULT « T, o Lname( SSNS * EMPLOYEE)

The preceding operations are shown in Figure 6.8(a).

Figure 6.8
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T« R+ S.
(@) (b)
SSN_PNOS SMITH_PNOS R S
Essn Pno Pno A B A

123456789 1 1 al b1 al
123456789 2 2 a2 b1 a2
666884444 3 a3 b1 a3
453453453 1 a4 b1

453453453 | 2 SSNS al | b2 T
333445555 2 Ssn a3 b2 B
333445555 3 123456789 a2 b3 b1
333445555 10 453453453 a3 b3 b4
333445555 20 a4 b3

999887777 30 al b4

999887777 10 a2 b4

987987987 10 a3 b4

987987987 30

987654321 30

987654321 20

888665555 20
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In general, the DIVISION operation is applied to two relations R(Z) + S(X), where
the attributes of R are a subset of the attributes of S; that is, X < Z. Let Y be the set
of attributes of R that are not attributes of S; thatis, Y= Z— X (and hence Z =X U
Y). The result of DIVISION is a relation T(Y) that includes a tuple ¢ if tuples ¢, appear
in R with ¢ [Y] = t, and with t, [X] = t; for every tuple t¢ in S. This means that, for
a tuple t to appear in the result T of the DIVISION, the values in ¢ must appear in R in
combination with every tuple in S. Note that in the formulation of the DIVISION
operation, the tuples in the denominator relation S restrict the numerator relation R
by selecting those tuples in the result that match all values present in the denomina-
tor. It is not necessary to know what those values are as they can be computed by
another operation, as illustrated in the SMITH_PNOS relation in the above example.

Figure 6.8(b) illustrates a DIVISION operation where X = {A}, Y= {B}, and Z = {A,
B}. Notice that the tuples (values) b, and b, appear in R in combination with all
three tuples in S; that is why they appear in the resulting relation T. All other values
of Bin R do not appear with all the tuples in S and are not selected: b, does not
appear with a,, and b, does not appear with a.

The DIVISION operation can be expressed as a sequence of T, X, and — operations as
follows:

T1 « m,(R)
T2 « 1y ((SX T1) - R)
T« T1-T2

The DIVISION operation is defined for convenience for dealing with queries that
involve universal quantification (see Section 6.6.7) or the all condition. Most
RDBMS implementations with SQL as the primary query language do not directly
implement division. SQL has a roundabout way of dealing with the type of query
illustrated above (see Section 5.1.4, queries Q3A and Q3B). Table 6.1 lists the various
basic relational algebra operations we have discussed.

6.3.5 Notation for Query Trees

In this section we describe a notation typically used in relational systems to repre-
sent queries internally. The notation is called a query tree or sometimes it is known
as a query evaluation tree or query execution tree. It includes the relational algebra
operations being executed and is used as a possible data structure for the internal
representation of the query in an RDBMS.

A query tree is a tree data structure that corresponds to a relational algebra expres-
sion. It represents the input relations of the query as leaf nodes of the tree, and rep-
resents the relational algebra operations as internal nodes. An execution of the
query tree consists of executing an internal node operation whenever its operands
(represented by its child nodes) are available, and then replacing that internal node
by the relation that results from executing the operation. The execution terminates
when the root node is executed and produces the result relation for the query.
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Table 6.1 Operations of Relational Algebra
OPERATION PURPOSE NOTATION
SELECT Selects all tuples that satisfy the selection condition . - (R)
i <selection condition>
from a relation R.
PROJECT Produces a new relation with only some of the attrib- T .. (R)
) <attribute list>
utes of R, and removes duplicate tuples.
THETA JOIN Produce.:s all coml.)inatiops. of tuples from R, and R, Ry ™ i conditions Bo
that satisfy the join condition.
EQUIOIN Produces all the combinations of tuples from R, and R. X R, OR

NATURAL JOIN

UNION

INTERSECTION

DIFFERENCE

CARTESIAN
PRODUCT

DIVISION

R, that §atisfy a join condition with only equality
comparisons.

Same as EQUUJOIN except that the join attributes of R,
are not included in the resulting relation; if the join
attributes have the same names, they do not have to
be specified at all.

Produces a relation that includes all the tuples in R,
or R, or both R, and R,; R, and R, must be union
compatible.

Produces a relation that includes all the tuples in both
R, and R,; R, and R, must be union compatible.

Produces a relation that includes all the tuples in R,
that are not in R,; R, and R, must be union compatible.

Produces a relation that has the attributes of R, and
R, and includes as tuples all possible combinations of
tuples from R, and R,.

Produces a relation R(X) that includes all tuples #[X]
in R|(Z) that appear in R, in combination with every
tuple from R,(Y), where Z=X U Y.

1 <join condition>
1 (<join attributes 1>),

(<join attributes 2>) RZ

R

* L .
1 (<join attributes 1>),

R* .. ..
1 <join condition> ~2°

ORR

(<join attributes 2>)

ORR, * R,
R, UR,

R

R,(Z2) + R,(Y)

R,

Figure 6.9 shows a query tree for Query 2 (see Section 4.3.1): For every project
located in ‘Stafford, list the project number, the controlling department number, and
the department manager’s last name, address, and birth date. This query is specified
on the relational schema of Figure 3.5 and corresponds to the following relational
algebra expression:

nPnumber, Dnum, Lname, Address, Bdate(((GPIocation:‘Stafford’(PROJECT))
(DEPARTMENT)) X (EMPLOYEE))

Dnum=Dnumber

In Figure 6.9, the three leaf nodes P, D, and E represent the three relations PROJECT,
DEPARTMENT, and EMPLOYEE. The relational algebra operations in the expression

Mgr_ssn=Ssn
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T P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate

(3)
™ D.Mgr_ssn=E.Ssn

()

™ P.Dnum=D.Dnumber e EMPLOYEE

(1)

% P.Plocation= ‘Stafford’ @ DEPARTMENT

Figure 6.9
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Query tree corresponding

to the relational algebra
AROIZCY expression for Q2.

are represented by internal tree nodes. The query tree signifies an explicit order of
execution in the following sense. In order to execute Q2, the node marked (1) in
Figure 6.9 must begin execution before node (2) because some resulting tuples of
operation (1) must be available before we can begin to execute operation (2).
Similarly, node (2) must begin to execute and produce results before node (3) can
start execution, and so on. In general, a query tree gives a good visual representation
and understanding of the query in terms of the relational operations it uses and is
recommended as an additional means for expressing queries in relational algebra.
We will revisit query trees when we discuss query processing and optimization in
Chapter 19.

6.4 Additional Relational Operations

Some common database requests—which are needed in commercial applications
for RDBMSs—cannot be performed with the original relational algebra operations
described in Sections 6.1 through 6.3. In this section we define additional opera-
tions to express these requests. These operations enhance the expressive power of
the original relational algebra.

6.4.1 Generalized Projection

The generalized projection operation extends the projection operation by allowing
functions of attributes to be included in the projection list. The generalized form
can be expressed as:

Ty o, . in (R)
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where F,, F,, ..., F, are functions over the attributes in relation R and may involve
arithmetic operations and constant values. This operation is helpful when develop-
ing reports where computed values have to be produced in the columns of a query
result.

As an example, consider the relation
EMPLOYEE (Ssn, Salary, Deduction, Years_service)
A report may be required to show

Net Salary = Salary — Deduction,
Bonus = 2000 * Years_service, and
Tax = 0.25 * Salary.

Then a generalized projection combined with renaming may be used as follows:

REPORT « p(Ssn, Net_salary, Bonus, Tax)(TCSsn, Salary — Deduction, 2000 * Years_service,

0.25 * Salary(EM PLOYEE))

6.4.2 Aggregate Functions and Grouping

Another type of request that cannot be expressed in the basic relational algebra is to
specify mathematical aggregate functions on collections of values from the data-
base. Examples of such functions include retrieving the average or total salary of all
employees or the total number of employee tuples. These functions are used in sim-
ple statistical queries that summarize information from the database tuples.
Common functions applied to collections of numeric values include SUM,
AVERAGE, MAXIMUM, and MINIMUM. The COUNT function is used for counting
tuples or values.

Another common type of request involves grouping the tuples in a relation by the
value of some of their attributes and then applying an aggregate function
independently to each group. An example would be to group EMPLOYEE tuples by
Dno, so that each group includes the tuples for employees working in the same
department. We can then list each Dno value along with, say, the average salary of
employees within the department, or the number of employees who work in the
department.

We can define an AGGREGATE FUNCTION operation, using the symbol 3 (pro-
nounced script F)’, to specify these types of requests as follows:

3 R)

where <grouping attributes> is a list of attributes of the relation specified in R, and
<function list> is a list of (<function> <attribute>) pairs. In each such pair,
<function> is one of the allowed functions—such as SUM, AVERAGE, MAXIMUM,
MINIMUM, COUNT—and <attribute> is an attribute of the relation specified by R. The

<grouping attributes> <function list> (

"There is no single agreed-upon notation for specifying aggregate functions. In some cases a “script A’
is used.
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resulting relation has the grouping attributes plus one attribute for each element in
the function list. For example, to retrieve each department number, the number of
employees in the department, and their average salary, while renaming the resulting
attributes as indicated below, we write:

pR(Dno, No_of_employees, Average_sal)(Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYE E))

The result of this operation on the EMPLOYEE relation of Figure 3.6 is shown in
Figure 6.10(a).

In the above example, we specified a list of attribute names—between parentheses
in the RENAME operation—for the resulting relation R. If no renaming is applied,
then the attributes of the resulting relation that correspond to the function list will
each be the concatenation of the function name with the attribute name in the form
<function>_<attribute>.8 For example, Figure 6.10(b) shows the result of the fol-
lowing operation:

Dno S COUNT Ssn, AVERAGE Salary(EMPLOYEE)

If no grouping attributes are specified, the functions are applied to all the tuples in
the relation, so the resulting relation has a single tuple only. For example, Figure
6.10(c) shows the result of the following operation:

3 COUNT ssn, AVERAGE Salary(EMPLOYEE)

It is important to note that, in general, duplicates are not eliminated when an aggre-
gate function is applied; this way, the normal interpretation of functions such as
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Figure 6.10
The aggregate function operation.

a. pR(Dno, No_of_employees, Average_sa\)(Dno S COUNT Ssn, AVERAGE Sa\ary(EM PLOYEE)).

b. Dno S COUNT Ssn, AVERAGE Salary(EMPLOYEE)'
c. 3 counr Ssn, AVERAGE Salary(EMPLOYEE).

R
(@ | pno No_of_employees Average_sal (®) | pno Count_ssn Average_salary
5 4 33250 5 4 33250
4 3 31000 4 3 31000
1 55000 1 1 55000
(o) Count_ssn Average_salary
8 35125

8Note that this is an arbitrary notation we are suggesting. There is no standard notation.
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SUM and AVERAGE is computed.’ It is worth emphasizing that the result of apply-
ing an aggregate function is a relation, not a scalar number—even if it has a single
value. This makes the relational algebra a closed mathematical system.

6.4.3 Recursive Closure Operations

Another type of operation that, in general, cannot be specified in the basic original
relational algebra is recursive closure. This operation is applied to a recursive rela-
tionship between tuples of the same type, such as the relationship between an
employee and a supervisor. This relationship is described by the foreign key Super_ssn
of the EMPLOYEE relation in Figures 3.5 and 3.6, and it relates each employee tuple (in
the role of supervisee) to another employee tuple (in the role of supervisor). An
example of a recursive operation is to retrieve all supervisees of an employee e at all
levels—that is, all employees e’ directly supervised by e, all employees 'S directly
supervised by each employee €', all employees e”’ directly supervised by each
employee e, and so on.

It is relatively straightforward in the relational algebra to specify all employees
supervised by e at a specific level by joining the table with itself one or more times.
However, it is difficult to specify all supervisees at all levels. For example, to specify
the Ssns of all employees e’ directly supervised—at level one—by the employee e
whose name is James Borg’ (see Figure 3.6), we can apply the following operation:

BORG—SSN < nSsn(GFname:‘Iames’ AND Lname:‘Borg’(EMPLOYEE))
SUPERVISION(Ssn1, Ssn2) < T, soer sen(EMPLOYEE)
RESULT1(Ssn) « mg,,(SUPERVISION M ¢, o BORG_SSN)

To retrieve all employees supervised by Borg at level 2—that is, all employees e”
supervised by some employee ¢’ who is directly supervised by Borg—we can apply
another JOIN to the result of the first query, as follows:

RESULT2(Ssn) « mg,,{(SUPERVISION ™ ¢, RESULT1)

To get both sets of employees supervised at levels 1 and 2 by James Borg, we can
apply the UNION operation to the two results, as follows:

RESULT « RESULT2 U RESULT1

The results of these queries are illustrated in Figure 6.11. Although it is possible to
retrieve employees at each level and then take their UNION, we cannot, in general,
specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” without
utilizing a looping mechanism unless we know the maximum number of levels.!”
An operation called the transitive closure of relations has been proposed to compute
the recursive relationship as far as the recursion proceeds.

9n SQL, the option of eliminating duplicates before applying the aggregate function is available by
including the keyword DISTINCT (see Section 4.4.4).

10The SQL3 standard includes syntax for recursive closure.
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SUPERVISION
(Borg's Ssn is 888665555)
(Ssn) (Super_ssn)
Ssn1 Ssn2
123456789 | 333445555
333445555 | 888665555
999887777 | 987654321
987654321 | 888665555
666884444 | 333445555
453453453 | 333445555
087987987 | 987654321
888665555 | null

RESULT1 RESULT2 RESULT
Ssn Ssn Ssn
333445555 123456789 123456789
987654321 999887777 999887777
(Supenvised by Borg) 666884444 666884444
453453453 453453453
987987987 987987987
(Supervised by 333445555
Borg's subordinates) 987654321

(RESULT1 U RESULT2)

Figure 6.11
A two-level recursive

query.

6.4.4 OUTER JOIN Operations

Next, we discuss some additional extensions to the JOIN operation that are neces-
sary to specify certain types of queries. The JOIN operations described earlier match
tuples that satisfy the join condition. For example, for a NATURAL JOIN operation
R * S, only tuples from R that have matching tuples in S—and vice versa—appear in
the result. Hence, tuples without a matching (or related) tuple are eliminated from
the JOIN result. Tuples with NULL values in the join attributes are also eliminated.
This type of join, where tuples with no match are eliminated, is known as an inner
join. The join operations we described earlier in Section 6.3 are all inner joins. This
amounts to the loss of information if the user wants the result of the JOIN to include
all the tuples in one or more of the component relations.

A set of operations, called outer joins, were developed for the case where the user
wants to keep all the tuples in R, or all those in S, or all those in both relations in the
result of the JOIN, regardless of whether or not they have matching tuples in the
other relation. This satisfies the need of queries in which tuples from two tables are
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to be combined by matching corresponding rows, but without losing any tuples for
lack of matching values. For example, suppose that we want a list of all employee
names as well as the name of the departments they manage if they happen to manage
a department; if they do not manage one, we can indicate it with a NULL value. We
can apply an operation LEFT OUTER JOIN, denoted by 29, to retrieve the result as
follows:

TEMP « (EMPLOYEE < DEPARTMENT)

Ssn=Mgr_ssn
RESULT « ﬂ:Fname, Minit, Lname, Dname(TEMP)

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in R
™ §; if no matching tuple is found in S, then the attributes of S in the join result are
filled or padded with NULL values. The result of these operations is shown in Figure
6.12.

A similar operation, RIGHT OUTER JOIN, denoted by P, keeps every tuple in the
second, or right, relation S in the result of R DX S. A third operation, FULL OUTER
JOIN, denoted by <, keeps all tuples in both the left and the right relations when no
matching tuples are found, padding them with NULL values as needed. The three
outer join operations are part of the SQL2 standard (see Section 5.1.6). These oper-
ations were provided later as an extension of relational algebra in response to the
typical need in business applications to show related information from multiple
tables exhaustively. Sometimes a complete reporting of data from multiple tables is
required whether or not there are matching values.

6.4.5 The OUTER UNION Operation

The OUTER UNION operation was developed to take the union of tuples from two
relations that have some common attributes, but are not union (type) compatible.
This operation will take the UNION of tuples in two relations R(X, Y) and S(X, Z)
that are partially compatible, meaning that only some of their attributes, say X, are
union compatible. The attributes that are union compatible are represented only
once in the result, and those attributes that are not union compatible from either

Figure 6.12

The result of a LEFT
OUTER JOIN opera-
tion.

RESULT

Fname Minit Lname Dname
John B Smith NULL

Franklin T Wong Research
Alicia J Zelaya NULL

Jennifer S Wallace | Administration
Ramesh K Narayan | NULL

Joyce A English NULL

Ahmad \Y Jabbar NULL

James E Borg Headquarters
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relation are also kept in the result relation T(X, Y, Z). It is therefore the same as a
FULL OUTER JOIN on the common attributes.

Two tuples ¢, in R and ¢, in S are said to match if ¢, [X]=¢,[X]. These will be com-
bined (unioned) into a single tuple in ¢. Tuples in either relation that have no
matching tuple in the other relation are padded with NULL values. For example, an
OUTER UNION can be applied to two relations whose schemas are STUDENT(Name,
Ssn, Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank). Tuples
from the two relations are matched based on having the same combination of values
of the shared attributes—Name, Ssn, Department. The resulting relation,
STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the same
(Name, Ssn, Department) combination will appear only once in the result. Tuples
appearing only in STUDENT will have a NULL for the Rank attribute, whereas tuples
appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. A tuple
that exists in both relations, which represent a student who is also an instructor, will
have values for all its attributes.!!

Notice that the same person may still appear twice in the result. For example, we
could have a graduate student in the Mathematics department who is an instructor
in the Computer Science department. Although the two tuples representing that
person in STUDENT and INSTRUCTOR will have the same (Name, Ssn) values, they
will not agree on the Department value, and so will not be matched. This is because
Department has two different meanings in STUDENT (the department where the per-
son studies) and INSTRUCTOR (the department where the person is employed as an
instructor). If we wanted to apply the OUTER UNION based on the same (Name, Ssn)
combination only, we should rename the Department attribute in each table to reflect
that they have different meanings and designate them as not being part of the
union-compatible attributes. For example, we could rename the attributes as
MajorDept in STUDENT and WorkDept in INSTRUCTOR.

6.5 Examples of Queries
in Relational Algebra

The following are additional examples to illustrate the use of the relational algebra
operations. All examples refer to the database in Figure 3.6. In general, the same
query can be stated in numerous ways using the various operations. We will state
each query in one way and leave it to the reader to come up with equivalent formu-
lations.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

"Note that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the com-
mon attributes of the two relations.
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RESEARCH_DEPT « 6.1 c—escarcty(DEPARTMENT)
RESEARCH_EMPS « (RESEARCH_DEPT ™
RESULT ¢ T oo, Lname. Address RESEARCH_EMPS)

EMPLOYEE)

As a single in-line expression, this query becomes:

(GDname:‘Research’(DEPARTMENT e (EMPLOYEE))

nFname, Lname, Address Dnumber=Dno

This query could be specified in other ways; for example, the order of the JOIN and
SELECT operations could be reversed, or the JOIN could be replaced by a NATURAL
JOIN after renaming one of the join attributes to match the other join attribute
name.

Query 2. For every project located in ‘Stafford), list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

STAFFORD_PROJS « Gpiionesiafiorss(PROJECT)

CONTR_DEPTS < (STAFFORD_PROJS ™ DEPARTMENT)
PROJ_DEPT_MGRS « (CONTR_DEPTS M, o EMPLOYEE)
RESULT « ﬂ:Pnumber, Dnum, Lname, Address, Bdate(PROJ—DEPT—MGRS)

In this example, we first select the projects located in Stafford, then join them with
their controlling departments, and then join the result with the department man-
agers. Finally, we apply a project operation on the desired attributes.

Query 3. Find the names of employees who work on all the projects controlled
by department number 5.

DEPTS_PROJS < ppno) (Mppumbor( Sonum—s(PROJECT)))
EMP_PROJ < p(s¢, pno)(Tesen, pno( WORKS_ON))
RESULT_EMP_SSNS « EMP_PROJ = DEPT5_PROJS
RESULT ¢ T frome(RESULT_EMP_SSNS * EMPLOYEE)

In this query, we first create a table DEPT5_PROJS that contains the project numbers
of all projects controlled by department 5. Then we create a table EMP_PROJ that
holds (Ssn, Pno) tuples, and apply the division operation. Notice that we renamed
the attributes so that they will be correctly used in the division operation. Finally, we
join the result of the division, which holds only Ssn values, with the EMPLOYEE
table to retrieve the desired attributes from EMPLOYEE.

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith), either as a worker or as a manager of the department
that controls the project.

SMITHS(Essn) « mg,, (O ame—ssmity (EMPLOYEE))

SMITH_WORKER_PROJS « TEPnO(WORKS_ON * SMITHS)

MGRS ¢ T e, prumber(EMPLOYEE X o\ DEPARTMENT)
SMITH_MANAGED_DEPTS(Dnum) « g ver (Otnarmerssomic(MGRS))
SMITH_MGR_PROJS(Pno) « mp_,,..,(SMITH_MANAGED_DEPTS * PROJECT)
RESULT <« (SMITH_WORKER_PROJS U SMITH_MGR_PROJS)
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In this query, we retrieved the project numbers for projects that involve an
employee named Smith as a worker in SMITH_WORKER_PROJS. Then we retrieved
the project numbers for projects that involve an employee named Smith as manager
of the department that controls the project in SMITH_MGR_PROJS. Finally, we
applied the UNION operation on SMITH_WORKER PROJS and
SMITH_MGR_PROIJS. As a single in-line expression, this query becomes:

Tpno (WORKS—ON P Essn:Ssn(Tchn (GLname:‘Smith’(EMPLOYEE))) Y T

( (Tchumber (GLname:‘Smith’(Taname, Dnumber( EMPLOYE E) ) ) e
DEPARTMENT)) PROJECT)

Ssn=Mgr_ssn Dnumber=Dnum

Query 5. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational
algebra. We have to use the AGGREGATE FUNCTION operation with the COUNT
aggregate function. We assume that dependents of the same employee have
distinct Dependent_name values.

T1(Ssn, No_of_dependents)« ¢ 3 count Dependent_name(DEPENDENT)

T2 « 6No_of_dependents>2(T1)
RESULT 7, . frame( T2 * EMPLOYEE)

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE)
operation.

ALL_EMPS « ng_ (EMPLOYEE)

EMPS_WITH_DEPS(Ssn) « mg,,,(DEPENDENT)
EMPS_WITHOUT DEPS « (ALL_EMPS — EMPS_WITH_DEPS)
RESULT ¢ T 0 Fname(EMPS_WITHOUT_DEPS * EMPLOYEE)

We first retrieve a relation with all employee Ssns in ALL_EMPS. Then we create a
table with the Ssns of employees who have at least one dependent in
EMPS_WITH_DEPS. Then we apply the SET DIFFERENCE operation to retrieve
employees Ssns with no dependents in EMPS_WITHOUT_DEPS, and finally join this
with EMPLOYEE to retrieve the desired attributes. As a single in-line expression, this
query becomes:

((ng,(EMPLOYEE) — pg_ (ng..,(DEPENDENT))) * EMPLOYEE)

nLname, Fname

Query 7. List the names of managers who have at least one dependent.

MGRS(Ssn) ¢ Tyq, oon(DEPARTMENT)
EMPS_WITH_DEPS(Ssn) « mg,,,(DEPENDENT)
MGRS_WITH_DEPS « (MGRS N EMPS_WITH_DEPS)
RESULT ¢ 0. Frame( MGRS_WITH_DEPS * EMPLOYEE)

In this query, we retrieve the Ssns of managers in MGRS, and the Ssns of employees
with at least one dependent in EMPS_WITH_DEPS, then we apply the SET
INTERSECTION operation to get the Ssns of managers who have at least one
dependent.
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As we mentioned earlier, the same query can be specified in many different ways in
relational algebra. In particular, the operations can often be applied in various
orders. In addition, some operations can be used to replace others; for example, the
INTERSECTION operation in Q7 can be replaced by a NATURAL JOIN. As an exercise,
try to do each of these sample queries using different operations.!> We showed how
to write queries as single relational algebra expressions for queries Q1, Q4, and Q6.
Try to write the remaining queries as single expressions. In Chapters 4 and 5 and in
Sections 6.6 and 6.7, we show how these queries are written in other relational
languages.

6.6 The Tuple Relational Calculus

In this and the next section, we introduce another formal query language for the
relational model called relational calculus. This section introduces the language
known as tuple relational calculus, and Section 6.7 introduces a variation called
domain relational calculus. In both variations of relational calculus, we write one
declarative expression to specify a retrieval request; hence, there is no description of
how, or in what order, to evaluate a query. A calculus expression specifies what is to
be retrieved rather than how to retrieve it. Therefore, the relational calculus is con-
sidered to be a nonprocedural language. This differs from relational algebra, where
we must write a sequence of operations to specify a retrieval request in a particular
order of applying the operations; thus, it can be considered as a procedural way of
stating a query. It is possible to nest algebra operations to form a single expression;
however, a certain order among the operations is always explicitly specified in a rela-
tional algebra expression. This order also influences the strategy for evaluating the
query. A calculus expression may be written in different ways, but the way it is writ-
ten has no bearing on how a query should be evaluated.

It has been shown that any retrieval that can be specified in the basic relational alge-
bra can also be specified in relational calculus, and vice versa; in other words, the
expressive power of the languages is identical. This led to the definition of the con-
cept of a relationally complete language. A relational query language L is considered
relationally complete if we can express in L any query that can be expressed in rela-
tional calculus. Relational completeness has become an important basis for compar-
ing the expressive power of high-level query languages. However, as we saw in
Section 6.4, certain frequently required queries in database applications cannot be
expressed in basic relational algebra or calculus. Most relational query languages are
relationally complete but have more expressive power than relational algebra or rela-
tional calculus because of additional operations such as aggregate functions, group-
ing, and ordering. As we mentioned in the introduction to this chapter, the
relational calculus is important for two reasons. First, it has a firm basis in mathe-
matical logic. Second, the standard query language (SQL) for RDBMSs has some of
its foundations in the tuple relational calculus.

12When queries are optimized (see Chapter 19), the system will choose a particular sequence of opera-
tions that corresponds to an execution strategy that can be executed efficiently.
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Our examples refer to the database shown in Figures 3.6 and 3.7. We will use the
same queries that were used in Section 6.5. Sections 6.6.6, 6.6.7, and 6.6.8 discuss
dealing with universal quantifiers and safety of expression issues. (Students inter-
ested in a basic introduction to tuple relational calculus may skip these sections.)

6.6.1 Tuple Variables and Range Relations

The tuple relational calculus is based on specifying a number of tuple variables.
Each tuple variable usually ranges over a particular database relation, meaning that
the variable may take as its value any individual tuple from that relation. A simple
tuple relational calculus query is of the form:

{t | COND(#)}

where ¢ is a tuple variable and COND(¢) is a conditional (Boolean) expression
involving ¢ that evaluates to either TRUE or FALSE for different assignments of
tuples to the variable . The result of such a query is the set of all tuples ¢ that evalu-
ate COND(#) to TRUE. These tuples are said to satisfy COND(¢). For example, to find
all employees whose salary is above $50,000, we can write the following tuple calcu-
lus expression:

{t | EMPLOYEE(t) AND t.Salary>50000}

The condition EMPLOYEE(#) specifies that the range relation of tuple variable ¢ is
EMPLOYEE. Each EMPLOYEE tuple ¢ that satisfies the condition t.Salary>50000 will
be retrieved. Notice that t.Salary references attribute Salary of tuple variable #; this
notation resembles how attribute names are qualified with relation names or aliases
in SQL, as we saw in Chapter 4. In the notation of Chapter 3, t.Salary is the same as
writing t{Salary].

The above query retrieves all attribute values for each selected EMPLOYEE tuple t. To
retrieve only some of the attributes—say, the first and last names—we write

{t.Fname, t.Lname | EMPLOYEE(#) AND ¢.Salary>50000}

Informally, we need to specify the following information in a tuple relational calcu-
lus expression:

® For each tuple variable #, the range relation R of t. This value is specified by
a condition of the form R(#). If we do not specify a range relation, then the
variable ¢ will range over all possible tuples “in the universe” as it is not
restricted to any one relation.

B A condition to select particular combinations of tuples. As tuple variables
range over their respective range relations, the condition is evaluated for
every possible combination of tuples to identify the selected combinations
for which the condition evaluates to TRUE.

B A set of attributes to be retrieved, the requested attributes. The values of
these attributes are retrieved for each selected combination of tuples.

Before we discuss the formal syntax of tuple relational calculus, consider another
query.
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Query 0. Retrieve the birth date and address of the employee (or employees)
whose name is John B. Smith.

Q0: {t.Bdate, .Address | EMPLOYEE(#) AND t.Fname=John’ AND ¢.Minit="B’
AND t.Lname="Smith’}

In tuple relational calculus, we first specify the requested attributes ¢.Bdate and
t.Address for each selected tuple . Then we specify the condition for selecting a
tuple following the bar (|)—namely, that # be a tuple of the EMPLOYEE relation
whose Fname, Minit, and Lname attribute values are ‘John’, ‘B’ and ‘Smith’, respectively.

6.6.2 Expressions and Formulas
in Tuple Relational Calculus

A general expression of the tuple relational calculus is of the form

{11 Ap tyAp oo £, AL | COND(ty, Ly ooy by s by oos By )}

where t,, £, ..., tptpil oo Loy AT€ tuple variables, each A;isan attribute of the rela-
tion on which , ranges, and COND is a condition or formula.'? of the tuple rela-
tional calculus. A formula is made up of predicate calculus atoms, which can be one

of the following:

1. An atom of the form R(t,), where R is a relation name and t; is a tuple vari-
able. This atom identifies the range of the tuple variable ¢, as the relation
whose name is R. It evaluates to TRUE if t; is a tuple in the relation R, and
evaluates to FALSE otherwise.

2. An atom of the form t.A op t.B, where op is one of the comparison opera-
tors in the set {=, <, <, >, 2, #}, t; and t] are tuple variables, A is an attribute of
the relation on which t; ranges, and B'is an attribute of the relation on which
t; ranges.

3. An atom of the form t.A op c or c op t.B, where op is one of the compari-
son operators in the set {=, <, <, >, 2, 7&‘;*, t;and t; are tuple variables, A is an
attribute of the relation on which ¢, ranges, B is an attribute of the relation
on which t; ranges, and c is a constant value.

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-
nation of tuples; this is called the truth value of an atom. In general, a tuple variable
t ranges over all possible tuples in the universe. For atoms of the form R(¢), if ¢ is
assigned to a tuple that is a member of the specified relation R, the atom is TRUE; oth-
erwise, it is FALSE. In atoms of types 2 and 3, if the tuple variables are assigned to
tuples such that the values of the specified attributes of the tuples satisfy the condi-
tion, then the atom is TRUE.

A formula (Boolean condition) is made up of one or more atoms connected via the
logical operators AND, OR, and NOT and is defined recursively by Rules 1 and 2 as
follows:

B Rule I: Every atom is a formula.

13Also called a well-formed formula, or WFF, in mathematical logic.
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® Rule 2: If F, and F, are formulas, then so are (F, AND F,), (F, OR F,), NOT
(F,), and NOT (F,). The truth values of these formulas are derived from their
component formulas F, and F, as follows:

a. (F; AND F,) is TRUE if both F, and F, are TRUE; otherwise, it is FALSE.
b. (F1 OR FZ) is FALSE if both F, and F, are FALSE; otherwise, it is TRUE.
c. NOT (Fl) is TRUE if F1 is FALSE; it is FALSE ifF1 is TRUE.
d. NOT (Fz) is TRUE ifF2 is FALSE; it is FALSE ifF2 is TRUE.

6.6.3 The Existential and Universal Quantifiers

In addition, two special symbols called quantifiers can appear in formulas; these are
the universal quantifier (V) and the existential quantifier (3). Truth values for
formulas with quantifiers are described in Rules 3 and 4 below; first, however, we
need to define the concepts of free and bound tuple variables in a formula.
Informally, a tuple variable ¢ is bound if it is quantified, meaning that it appears in
an (31) or (V1) clause; otherwise, it is free. Formally, we define a tuple variable in a
formula as free or bound according to the following rules:

B An occurrence of a tuple variable in a formula F that is an atom is free in F.

B An occurrence of a tuple variable ¢ is free or bound in a formula made up of
logical connectives—(F, AND F,), (F, OR F,), NOT(F,), and NOT(F,)—
depending on whether it is free or bound in F, or F, (if it occurs in either).
Notice that in a formula of the form F = (F, AND F,) or F = (F, ORF,), a
tuple variable may be free in F, and bound in F,, or vice versa; in this case,
one occurrence of the tuple variable is bound and the other is free in F.

® All free occurrences of a tuple variable t in F are bound in a formula F’ of the
form F'= (3t)(F) or F' = (V1)(F). The tuple variable is bound to the quanti-
fier specified in F'. For example, consider the following formulas:

F, : d.Dname="Research’
F, : (31t)(d.Dnumber=t.Dno)
F, : (Vd)(d.Mgr_ssn="333445555")

The tuple variable d is free in both F| and F,, whereas it is bound to the (V) quan-
tifier in F;. Variable ¢ is bound to the (3) quantifier in F,.

We can now give Rules 3 and 4 for the definition of a formula we started earlier:

® Rule 3: If F is a formula, then so is (3¢)(F), where t is a tuple variable. The
formula (3¢)(F) is TRUE if the formula F evaluates to TRUE for some (at least
one) tuple assigned to free occurrences of ¢ in F; otherwise, (3¢)(F) is FALSE.

® Rule 4: If F is a formula, then so is (V1)(F), where ¢ is a tuple variable. The
formula (Vt)(F) is TRUE if the formula F evaluates to TRUE for every tuple
(in the universe) assigned to free occurrences of ¢ in F; otherwise, (Vt)(F) is
FALSE.

The (3) quantifier is called an existential quantifier because a formula (37)(F) is
TRUE if there exists some tuple that makes F TRUE. For the universal quantifier,
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(V1)(F) is TRUE if every possible tuple that can be assigned to free occurrences of ¢
in F is substituted for ¢, and F is TRUE for every such substitution. It is called the uni-
versal or for all quantifier because every tuple in the universe of tuples must make F
TRUE to make the quantified formula TRUE.

6.6.4 Sample Queries in Tuple Relational Calculus

We will use some of the same queries from Section 6.5 to give a flavor of how the
same queries are specified in relational algebra and in relational calculus. Notice
that some queries are easier to specify in the relational algebra than in the relational
calculus, and vice versa.

Query 1. List the name and address of all employees who work for the
‘Research’ department.

Q1: {t.Fname, tLname, t.Address | EMPLOYEE(f) AND (3d)(DEPARTMENT(d)
AND d.Dname=‘Research’ AND d.Dnumber=t.Dno)}

The only free tuple variables in a tuple relational calculus expression should be those
that appear to the left of the bar (|). In Q1, ¢ is the only free variable; it is then bound
successively to each tuple. If a tuple satisfies the conditions specified after the bar in
Q1, the attributes Fname, Lname, and Address are retrieved for each such tuple. The
conditions EMPLOYEE(#) and DEPARTMENT(d) specify the range relations for t and
d. The condition d.Dname = ‘Research’is a selection condition and corresponds to a
SELECT operation in the relational algebra, whereas the condition d.Dnumber =
t.Dno is a join condition and is similar in purpose to the (INNER) JOIN operation
(see Section 6.3).

Query 2. For every project located in ‘Stafford), list the project number, the
controlling department number, and the department manager’s last name,
birth date, and address.

Q2: {p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p) AND
EMPLOYEE(1) AND p.Plocation="Stafford’ AND ((3d)(DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=m.Ssn))}

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the
existential quantifier. The query condition is evaluated for every combination of
tuples assigned to p and m, and out of all possible combinations of tuples to which
p and m are bound, only the combinations that satisfy the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to
specify Q8—for each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor—we specify two tuple vari-
ables e and s that both range over the EMPLOYEE relation:

Q8: {e.Fname, e.Lname, s.Fname, s.Lname | EMPLOYEE(e) AND EMPLOYEE(s)
AND e.Super_ssn=s.Ssn}

Query 3'. List the name of each employee who works on some project con-
trolled by department number 5. This is a variation of Q3 in which all is
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changed to some. In this case we need two join conditions and two existential
quantifiers.

Q0': {e.Lname, e.Fname | EMPLOYEE(e) AND ((3x)(3w)(PROJECT(x) AND
WORKS_ON(w) AND x.Dnum=5 AND w.Essn=e.Ssn AND
x.Pnumber=w.Pno))}

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as manager of the controlling
department for the project.

Q4: { p.Pnumber | PROJECT(p) AND (((Je)(Iw)(EMPLOYEE(e)
AND WORKS_ON(w) AND w.Pno=p.Pnumber
AND e.Lname=‘Smith’ AND e.Ssn=w.Essn) )
OR
((3m)(3d)(EMPLOYEE(1n) AND DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=.Ssn
AND m.Lname="‘Smith’)))}

Compare this with the relational algebra version of this query in Section 6.5. The
UNION operation in relational algebra can usually be substituted with an OR con-
nective in relational calculus.

6.6.5 Notation for Query Graphs

In this section we describe a notation that has been proposed to represent relational
calculus queries that do not involve complex quantification in a graphical form.
These types of queries are known as select-project-join queries, because they only
involve these three relational algebra operations. The notation may be expanded to
more general queries, but we do not discuss these extensions here. This graphical
representation of a query is called a query graph. Figure 6.13 shows the query graph
for Q2. Relations in the query are represented by relation nodes, which are dis-
played as single circles. Constant values, typically from the query selection condi-
tions, are represented by constant nodes, which are displayed as double circles or
ovals. Selection and join conditions are represented by the graph edges (the lines
that connect the nodes), as shown in Figure 6.13. Finally, the attributes to be
retrieved from each relation are displayed in square brackets above each relation.

[P.Pnumber,P.Dnum] [E.Lname,E.address,E.Bdate]

P.Dnum=D.Dnumber /= D.Mgr_ssn=E.Ssn
© ®

P.Plocation="'Stafford’

Figure 6.13
Query graph for Q2.
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The query graph representation does not indicate a particular order to specify
which operations to perform first, and is hence a more neutral representation of a
select-project-join query than the query tree representation (see Section 6.3.5),
where the order of execution is implicitly specified. There is only a single query
graph corresponding to each query. Although some query optimization techniques
were based on query graphs, it is now generally accepted that query trees are prefer-
able because, in practice, the query optimizer needs to show the order of operations
for query execution, which is not possible in query graphs.

In the next section we discuss the relationship between the universal and existential
quantifiers and show how one can be transformed into the other.

6.6.6 Transforming the Universal and Existential Quantifiers

We now introduce some well-known transformations from mathematical logic that
relate the universal and existential quantifiers. It is possible to transform a universal
quantifier into an existential quantifier, and vice versa, to get an equivalent expres-
sion. One general transformation can be described informally as follows: Transform
one type of quantifier into the other with negation (preceded by NOT); AND and OR
replace one another; a negated formula becomes unnegated; and an unnegated for-
mula becomes negated. Some special cases of this transformation can be stated as
follows, where the = symbol stands for equivalent to:

(Vx) (P(x)) = NOT (3x) (NOT (P(x)))
(3x) (P(x)) = NOT (Vx) (NOT (P(x)))
(Vx) (P(x) AND Q(x)) = NOT (3x) (NOT (P(x)) OR NOT (Q(x)))
(Vx) (P(x) OR Q(x)) = NOT (Jx) (NOT (P(x)) AND NOT (Q(x)))
(3x) (P(x)) OR Q(x)) = NOT (Vx) (NOT (P(x)) AND NOT (Q(x)))
(3x) (P(x) AND Q(x)) = NOT (Vx) (NOT (P(x)) OR NOT (Q(x)))

Notice also that the following is TRUE, where the = symbol stands for implies:

(Vx)(P(x)) = (3x)(P(x))
NOT (3x)(P(x)) = NOT (Vx)(P(x))

~— — —
— — —

~
~— —

6.6.7 Using the Universal Quantifier in Queries

Whenever we use a universal quantifier, it is quite judicious to follow a few rules to
ensure that our expression makes sense. We discuss these rules with respect to the
query Q3.

Query 3. List the names of employees who work on all the projects controlled
by department number 5. One way to specify this query is to use the universal
quantifier as shown:

Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND ((Vx)(NOT(PROJECT(x)) OR NOT
(x.Dnum=5) OR ((Iw)(WORKS_ON(w) AND w.Essn=e.Ssn AND
x.Pnumber=w.Pno))))}



6.6 The Tuple Relational Calculus

We can break up Q3 into its basic components as follows:

Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND F'}
F' = ((Vx)(NOT(PROJECT(x)) OR F,))
F, = NOT(x.Dnum=5) OR F,
F,= ((3w)(WORKS_ON(w) AND w.Essn=e.Ssn
AND x.Pnumber=w.Pno))

We want to make sure that a selected employee e works on all the projects controlled
by department 5, but the definition of universal quantifier says that to make the
quantified formula TRUE, the inner formula must be TRUE for all tuples in the uni-
verse. The trick is to exclude from the universal quantification all tuples that we are
not interested in by making the condition TRUE for all such tuples. This is necessary
because a universally quantified tuple variable, such as x in Q3, must evaluate to
TRUE for every possible tuple assigned to it to make the quantified formula TRUE.

The first tuples to exclude (by making them evaluate automatically to TRUE) are
those that are not in the relation R of interest. In Q3, using the expression
NOT(PROJECT(x)) inside the universally quantified formula evaluates to TRUE all
tuples x that are not in the PROJECT relation. Then we exclude the tuples we are not
interested in from R itself. In Q3, using the expression NOT(x.Dnum=5) evaluates to
TRUE all tuples x that are in the PROJECT relation but are not controlled by depart-
ment 5. Finally, we specify a condition F, that must hold on all the remaining tuples
in R. Hence, we can explain Q8 as follows:

1. For the formula F’ = (Vx)(F) to be TRUE, we must have the formula F be
TRUE for all tuples in the universe that can be assigned to x. However, in Q3 we
are only interested in F being TRUE for all tuples of the PROJECT relation
that are controlled by department 5. Hence, the formula F is of the form
(NOT(PROJECT(x)) OR F,). The ‘NOT (PROJECT(x)) OR ..." condition is
TRUE for all tuples not in the PROJECT relation and has the effect of elimi-
nating these tuples from consideration in the truth value of F,. For every
tuple in the PROJECT relation, F; must be TRUE if F’ is to be TRUE.

2. Using the same line of reasoning, we do not want to consider tuples in the
PROJECT relation that are not controlled by department number 5, since we
are only interested in PROJECT tuples whose Dnum=5. Therefore, we can
write:

IF (x.Dnum=>5) THEN F,
which is equivalent to
(NOT (x.Dnum=5) OR F,)

3. Formula F, hence, is of the form NOT(x.Dnum=5) OR F,. In the context of
Q3, this means that, for a tuple x in the PROJECT relation, either its Dnum#5
or it must satisfy F,.

4. Finally, F, gives the condition that we want to hold for a selected EMPLOYEE

tuple: that the employee works on every PROJECT tuple that has not been
excluded yet Such employee tuples are selected by the query.
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In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e: For
every tuple x in the PROJECT relation with x.Dnum=5, there must exist a tuple w in
WORKS_ON such that w.Essn=e.Ssn and w.Pno=x.Pnumber. This is equivalent to
saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5.
(Whew!)

Using the general transformation from universal to existential quantifiers given in
Section 6.6.6, we can rephrase the query in Q3 as shown in Q3A, which uses a
negated existential quantifier instead of the universal quantifier:

Q3A: {e.Lname, e.Fname | EMPLOYEE(e) AND (NOT (dx) (PROJECT(x) AND
(x.Dnum=5) AND (NOT (Iw)(WORKS_ON(w) AND w.Essn=e.Ssn
AND x.Pnumber=w.Pno))))}

We now give some additional examples of queries that use quantifiers.
Query 6. List the names of employees who have no dependents.

Q6: {e.Fname, e.Lname | EMPLOYEE(e) AND (NOT (3d)(DEPENDENT(d)
AND e.Ssn=d.Essn))}

Using the general transformation rule, we can rephrase Q6 as follows:

06A:  {eFname, e.Lname | EMPLOYEE(e) AND ((Vd)(NOT(DEPENDENT(d))
OR NOT(e.Ssn=d.Essn)))}

Query 7. List the names of managers who have at least one dependent.

Q7: {e.Fname, e.Lname | EMPLOYEE(e) AND ((3d)(3p)(DEPARTMENT(d)
AND DEPENDENT(p) AND e.Ssn=d.Mgr_ssn AND p.Essn=e.Ssn))}

This query is handled by interpreting managers who have at least one dependent as
managers for whom there exists some dependent.

6.6.8 Safe Expressions

Whenever we use universal quantifiers, existential quantifiers, or negation of predi-
cates in a calculus expression, we must make sure that the resulting expression
makes sense. A safe expression in relational calculus is one that is guaranteed to
yield a finite number of tuples as its result; otherwise, the expression is called unsafe.
For example, the expression

{t | NOT (EMPLOYEE(?))}

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples,
which are infinitely numerous. If we follow the rules for Q3 discussed earlier, we will
get a safe expression when using universal quantifiers. We can define safe expres-
sions more precisely by introducing the concept of the domain of a tuple relational
calculus expression: This is the set of all values that either appear as constant values
in the expression or exist in any tuple in the relations referenced in the expression.
For example, the domain of {t | NOT(EMPLOYEE(?))} is the set of all attribute values
appearing in some tuple of the EMPLOYEE relation (for any attribute). The domain
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of the expression Q3A would include all values appearing in EMPLOYEE, PROJECT,
and WORKS_ON (unioned with the value 5 appearing in the query itself).

An expression is said to be safe if all values in its result are from the domain of the
expression. Notice that the result of {r | NOT(EMPLOYEE(?))} is unsafe, since it will,
in general, include tuples (and hence values) from outside the EMPLOYEE relation;
such values are not in the domain of the expression. All of our other examples are
safe expressions.

6.7 The Domain Relational Calculus

There is another type of relational calculus called the domain relational calculus, or
simply, domain calculus. Historically, while SQL (see Chapters 4 and 5), which was
based on tuple relational calculus, was being developed by IBM Research at San
Jose, California, another language called QBE (Query-By-Example), which is
related to domain calculus, was being developed almost concurrently at the IBM T.J.
Watson Research Center in Yorktown Heights, New York. The formal specification
of the domain calculus was proposed after the development of the QBE language
and system.

Domain calculus differs from tuple calculus in the type of variables used in formu-
las: Rather than having variables range over tuples, the variables range over single
values from domains of attributes. To form a relation of degree n for a query result,
we must have # of these domain variables—one for each attribute. An expression of
the domain calculus is of the form

{55 %55 s X, | COND(X}5 Xy cves X5 X,y 1> Xypigp oo Xy )}

wherq Xpp Xpp woor Xop X Xy oo Xy ATE .domaln variables that range over
domains (of attributes), and COND is a condition or formula of the domain rela-
tional calculus.

A formula is made up of atoms. The atoms of a formula are slightly different from
those for the tuple calculus and can be one of the following:

1. An atom of the form R(x,, x,, ..., xj), where R is the name of a relation of
degree j and each x;, 1 <i<j, is a domain variable. This atom states that a list
of values of <x;, x, ..., x> must be a tuple in the relation whose name is R,
where x; is the value of the ith attribute value of the tuple. To make a domain
calculus expression more concise, we can drop the commas in a list of vari-
ables; thus, we can write:

{X)5 X5 ey X, | R(2) %, x5) AND ...}
instead of:
{x> X9 oo s X, | R(x, X,, x5) AND ...}

2. An atom of the form x; op x;, where op is one of the comparison operators in
the set {=, <, <, >, 2, #}, and x; and x; are domain variables.

3. An atom of the form x; op c or c op X where op is one of the comparison
operators in the set {=, <, <, >, 2, #}, x, and X; are domain variables, and cis a
constant value.
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As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of val-
ues, called the truth values of the atoms. In case 1, if the domain variables are
assigned values corresponding to a tuple of the specified relation R, then the atom is
TRUE. In cases 2 and 3, if the domain variables are assigned values that satisfy the
condition, then the atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms,
variables, and quantifiers, so we will not repeat the specifications for formulas here.
Some examples of queries specified in the domain calculus follow. We will use low-
ercase letters |, m, n, ..., x, ¥, z for domain variables.

Query 0. List the birth date and address of the employee whose name is ‘John
B. Smith’.

Qo: {u,v| (3q) @r) 3s) A1) @w) Tx) Ty) 32)
(EMPLOYEE(grstuvwayz) AND g=John’ AND r="B’ AND s=‘Smith’)}

We need ten variables for the EMPLOYEE relation, one to range over each of the
domains of attributes of EMPLOYEE in order. Of the ten variables ¢, 7, s, ..., z, only u
and v are free, because they appear to the left of the bar and hence should not be
bound to a quantifier. We first specify the requested attributes, Bdate and Address, by
the free domain variables u for BDATE and v for ADDRESS. Then we specify the con-
dition for selecting a tuple following the bar (|)—namely, that the sequence of val-
ues assigned to the variables grstuvwxyz be a tuple of the EMPLOYEE relation and
that the values for g (Fname), r (Minit), and s (Lname) be equal to ‘John’, ‘B,
and ‘Smith’, respectively. For convenience, we will quantify only those variables
actually appearing in a condition (these would be g, r, and s in Q0) in the rest of our
examples.!*

An alternative shorthand notation, used in QBE, for writing this query is to assign
the constants ‘John’, ‘B, and ‘Smith’ directly as shown in QOA. Here, all variables not
appearing to the left of the bar are implicitly existentially quantified:!>

QOA:  {u, v| EMPLOYEE(‘John’, B ‘Smith’t,u,v,w,x,5,2) }

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: {g, s, v| (3z) A1) (Im) (EMPLOYEE(grstuvwxyz) AND
DEPARTMENT(lmno) AND [=‘Research’ AND m=z)}

A condition relating two domain variables that range over attributes from two rela-
tions, such as m = z in Q1, is a join condition, whereas a condition that relates a
domain variable to a constant, such as [ = ‘Research), is a selection condition.

4Note that the notation of quantifying only the domain variables actually used in conditions and of
showing a predicate such as EMPLOYEE(grstuvwxyz) without separating domain variables with commas
is an abbreviated notation used for convenience; it is not the correct formal notation.

15Again, this is not a formally accurate notation.



Query 2. For every project located in ‘Stafford) list the project number, the
controlling department number, and the department manager’s last name,
birth date, and address.

Q2: {i, k, s, u, v| (3j)(Im)(In)(3t)(PROJECT(hijk) AND
EMPLOYEE(grstuvwxyz) AND DEPARTMENT(/mno) AND k=m AND
n=t AND j="‘Stafford’)}

Query 6. List the names of employees who have no dependents.

Qe: {q> s | (31)(EMPLOYEE(grstuvwxyz) AND
(NOT(31)(DEPENDENT(Imnop) AND t=I)))}

Q6 can be restated using universal quantifiers instead of the existential quantifiers,
as shown in Q6A:

Q6A:  {g, s| (31)(EMPLOYEE(grstuvwxyz) AND
((Vl)(NOT(DEPENDENT(ZWU’ZOP)) OR NOT(tZZ))))}

Query 7. List the names of managers who have at least one dependent.

Q7: {s, g | A1) (3j)(I])(EMPLOYEE(grstuvwxyz) AND DEPARTMENT (hijk)
AND DEPENDENT(lmnop) AND t=j AND l=t)}

As we mentioned earlier, it can be shown that any query that can be expressed in the
basic relational algebra can also be expressed in the domain or tuple relational cal-
culus. Also, any safe expression in the domain or tuple relational calculus can be
expressed in the basic relational algebra.

The QBE language was based on the domain relational calculus, although this was
realized later, after the domain calculus was formalized. QBE was one of the first
graphical query languages with minimum syntax developed for database systems. It
was developed at IBM Research and is available as an IBM commercial product as
part of the Query Management Facility (QMF) interface option to DB2. The basic
ideas used in QBE have been applied in several other commercial products. Because
of its important place in the history of relational languages, we have included an
overview of QBE in Appendix C.

6.8 Summary

In this chapter we presented two formal languages for the relational model of data.
They are used to manipulate relations and produce new relations as answers to
queries. We discussed the relational algebra and its operations, which are used to
specify a sequence of operations to specify a query. Then we introduced two types of
relational calculi called tuple calculus and domain calculus.

In Sections 6.1 through 6.3, we introduced the basic relational algebra operations and
illustrated the types of queries for which each is used. First, we discussed the unary
relational operators SELECT and PROJECT, as well as the RENAME operation. Then,
we discussed binary set theoretic operations requiring that relations on which they

6.8 Summary
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are applied be union (or type) compatible; these include UNION, INTERSECTION, and
SET DIFFERENCE. The CARTESIAN PRODUCT operation is a set operation that can
be used to combine tuples from two relations, producing all possible combinations. It
is rarely used in practice; however, we showed how CARTESIAN PRODUCT followed
by SELECT can be used to define matching tuples from two relations and leads to the
JOIN operation. Different JOIN operations called THETA JOIN, EQUIJOIN, and
NATURAL JOIN were introduced. Query trees were introduced as a graphical represen-
tation of relational algebra queries, which can also be used as the basis for internal
data structures that the DBMS can use to represent a query.

We discussed some important types of queries that cannot be stated with the basic
relational algebra operations but are important for practical situations. We intro-
duced GENERALIZED PROJECTION to use functions of attributes in the projection
list and the AGGREGATE FUNCTION operation to deal with aggregate types of sta-
tistical requests that summarize the information in the tables. We discussed recur-
sive queries, for which there is no direct support in the algebra but which can be
handled in a step-by-step approach, as we demonstrated. Then we presented the
OUTER JOIN and OUTER UNION operations, which extend JOIN and UNION and
allow all information in source relations to be preserved in the result.

The last two sections described the basic concepts behind relational calculus, which
is based on the branch of mathematical logic called predicate calculus. There are
two types of relational calculi: (1) the tuple relational calculus, which uses tuple
variables that range over tuples (rows) of relations, and (2) the domain relational
calculus, which uses domain variables that range over domains (columns of rela-
tions). In relational calculus, a query is specified in a single declarative statement,
without specifying any order or method for retrieving the query result. Hence, rela-
tional calculus is often considered to be a higher-level declarative language than the
relational algebra, because a relational calculus expression states what we want to
retrieve regardless of how the query may be executed.

We discussed the syntax of relational calculus queries using both tuple and domain
variables. We introduced query graphs as an internal representation for queries in
relational calculus. We also discussed the existential quantifier (3) and the universal
quantifier (V). We saw that relational calculus variables are bound by these quanti-
fiers. We described in detail how queries with universal quantification are written,
and we discussed the problem of specifying safe queries whose results are finite. We
also discussed rules for transforming universal into existential quantifiers, and vice
versa. It is the quantifiers that give expressive power to the relational calculus, mak-
ing it equivalent to the basic relational algebra. There is no analog to grouping and
aggregation functions in basic relational calculus, although some extensions have
been suggested.

Review Questions

6.1. List the operations of relational algebra and the purpose of each.



6.2.

6.3.

6.4.

6.5.

6.6.

What is union compatibility? Why do the UNION, INTERSECTION, and
DIFFERENCE operations require that the relations on which they are applied
be union compatible?

Discuss some types of queries for which renaming of attributes is necessary
in order to specify the query unambiguously.

Discuss the various types of inner join operations. Why is theta join
required?

What role does the concept of foreign key play when specifying the most
common types of meaningful join operations?

What is the FUNCTION operation? What is it used for?

6.7. How are the OUTER JOIN operations different from the INNER JOIN opera-

tions? How is the OUTER UNION operation different from UNION?

6.8. In what sense does relational calculus differ from relational algebra, and in
what sense are they similar?
6.9. How does tuple relational calculus differ from domain relational calculus?
6.10. Discuss the meanings of the existential quantifier (3) and the universal
quantifier (V).
6.11. Define the following terms with respect to the tuple calculus: tuple variable,
range relation, atom, formula, and expression.
6.12. Define the following terms with respect to the domain calculus: domain vari-
able, range relation, atom, formula, and expression.
6.13. What is meant by a safe expression in relational calculus?
6.14. When is a query language called relationally complete?
Exercises
6.15. Show the result of each of the sample queries in Section 6.5 as it would apply
to the database state in Figure 3.6.
6.16. Specify the following queries on the COMPANYrelational database schema

shown in Figure 5.5, using the relational operators discussed in this chapter.
Also show the result of each query as it would apply to the database state in
Figure 3.6.

a. Retrieve the names of all employees in department 5 who work more than
10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong.

d. For each project, list the project name and the total hours per week (by all
employees) spent on that project.

Exercises
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i

. Retrieve the names of all employees who work on every project.
. Retrieve the names of all employees who do not work on any project.

. For each department, retrieve the department name and the average

salary of all employees working in that department.

. Retrieve the average salary of all female employees.

. Find the names and addresses of all employees who work on at least one

project located in Houston but whose department has no location in
Houston.

List the last names of all department managers who have no dependents.

. Consider the AIRLINE relational database schema shown in Figure 3.8, which

was described in Exercise 3.12. Specify the following queries in relational
algebra:

a.

For each flight, list the flight number, the departure airport for the first leg
of the flight, and the arrival airport for the last leg of the flight.

. List the flight numbers and weekdays of all flights or flight legs that

depart from Houston Intercontinental Airport (airport code TAH’) and
arrive in Los Angeles International Airport (airport code ‘LAX’).

. List the flight number, departure airport code, scheduled departure time,

arrival airport code, scheduled arrival time, and weekdays of all flights or
flight legs that depart from some airport in the city of Houston and arrive
at some airport in the city of Los Angeles.

. List all fare information for flight number ‘CO197’.
. Retrieve the number of available seats for flight number ‘CO197” on

2009-10-09’.

. Consider the LIBRARY relational database schema shown in Figure 6.14,

which is used to keep track of books, borrowers, and book loans. Referential
integrity constraints are shown as directed arcs in Figure 6.14, as in the nota-
tion of Figure 3.7. Write down relational expressions for the following
queries:

a.

How many copies of the book titled The Lost Tribe are owned by the
library branch whose name is ‘Sharpstown’?

. How many copies of the book titled The Lost Tribe are owned by each

library branch?

. Retrieve the names of all borrowers who do not have any books checked

out.

. For each book that is loaned out from the Sharpstown branch and whose

Due_date is today, retrieve the book title, the borrower’s name, and the
borrower’s address.

. For each library branch, retrieve the branch name and the total number

of books loaned out from that branch.
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BOOK
| Book_id| Title | Publisher_name|
A“
BOOK_AUTHORS

| Book_id| Author_name|
|

PUBLISHER
| Name | Address | Phone |

A

BOOK_COPIES
[ Book id[ Branch id[ No_of copies |

BOOK_LOANS

| Book_id| Branch_id| Card_no| Date_out| Due_date
— |
I
LIBRARY_BRANCH

| Branch_id| Branch_name| Address |

BORROWER Figure 6.14

| Card_no| Name | Address | Phone | A relational database
schema for a LIBRARY
database.

6.19.

f. Retrieve the names, addresses, and number of books checked out for all
borrowers who have more than five books checked out.

g. For each book authored (or coauthored) by Stephen King, retrieve the
title and the number of copies owned by the library branch whose name
is Central.

Specify the following queries in relational algebra on the database schema
given in Exercise 3.14:
a. List the Order# and Ship_date for all orders shipped from Warehouse# W2.

b. List the WAREHOUSE information from which the CUSTOMER named
Jose Lopez was supplied his orders. Produce a listing: Order#, Warehouse#.
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6.20.

6.21.

6.22.

. Produce a listing Cname, No_of_orders, Avg_order_amt, where the middle

column is the total number of orders by the customer and the last column
is the average order amount for that customer.

. List the orders that were not shipped within 30 days of ordering.
. List the Order# for orders that were shipped from all warehouses that the

company has in New York.

Specify the following queries in relational algebra on the database schema
given in Exercise 3.15:

a.

b.

C.

Give the details (all attributes of trip relation) for trips that exceeded
$2,000 in expenses.

Print the Ssns of salespeople who took trips to Honolulu.

Print the total trip expenses incurred by the salesperson with SSN = 234-
56-7890".

Specify the following queries in relational algebra on the database schema
given in Exercise 3.16:

a.

List the number of courses taken by all students named John Smith in
Winter 2009 (i.e., Quarter=W09).

. Produce a list of textbooks (include Course#, Book_isbn, Book_title) for

courses offered by the ‘CS’ department that have used more than two
books.

. List any department that has all its adopted books published by ‘Pearson

Publishing’.

Consider the two tables T1 and T2 shown in Figure 6.15. Show the results of
the following operations:

a.

S

-~ ® 92 0

T1 pq T1.P=T2A 12
T1 T1.Q=T2.B T2
T1pq i p-ra T2
TT 14 T1.Q=T2.B 12
T1U T2

TT pq (T1.P=T2.AAND T1.R = T2.C) 12

Figure 6.15
A database state for the
relations 71 and T2.

TABLE T1 TABLE T2
Plalr] [a]B]C]
10 10 b

a 5 6
15 b 8 25 ¢ 3
25 a 6 10 b 5



6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

Specify the following queries in relational algebra on the database schema in
Exercise 3.17:

a. For the salesperson named ‘Jane Dog, list the following information for
all the cars she sold: Serial#, Manufacturer, Sale_price.

b. List the Serial# and Model of cars that have no options.

c. Consider the NATURAL JOIN operation between SALESPERSON and
SALE. What is the meaning of a left outer join for these tables (do not
change the order of relations)? Explain with an example.

d. Write a query in relational algebra involving selection and one set opera-
tion and say in words what the query does.

Specify queries a, b, ¢, e, f, 1, and j of Exercise 6.16 in both tuple and domain
relational calculus.

Specify queries a, b, ¢, and d of Exercise 6.17 in both tuple and domain rela-
tional calculus.

Specify queries ¢, d, and f of Exercise 6.18 in both tuple and domain rela-
tional calculus.

In a tuple relational calculus query with #n tuple variables, what would be the
typical minimum number of join conditions? Why? What is the effect of
having a smaller number of join conditions?

Rewrite the domain relational calculus queries that followed QO in Section
6.7 in the style of the abbreviated notation of QOA, where the objective is to
minimize the number of domain variables by writing constants in place of
variables wherever possible.

Consider this query: Retrieve the Ssns of employees who work on at least
those projects on which the employee with Ssn=123456789 works. This may
be stated as (FORALL x) (IF P THEN Q), where

B x is a tuple variable that ranges over the PROJECT relation.
B P = EMPLOYEE with Ssn=123456789 works on PROJECT x.
B Q=EMPLOYEE e works on PROJECT x.

Express the query in tuple relational calculus, using the rules

® (V x)(P(x)) = NOT(3x)(NOT(P(x))).

= (IF PTHEN Q) = (NOT(P) OR Q).

Show how you can specify the following relational algebra operations in
both tuple and domain relational calculus.

a. 0,_(R(A, B, 0))

b. _, .(R(A, B, C))

c. R(A, B, C) * S(C, D, E)

d. R(A, B,C) U S(A, B, C)

e. R(A, B,C) N S(A, B, C)

Exercises
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6.31.

6.32.

6.33.

f. R(A,B,C) = S(A, B, C)

g- R(A, B, C) xS(D, E, F)

h. R(A, B) + S(A)

Suggest extensions to the relational calculus so that it may express the fol-
lowing types of operations that were discussed in Section 6.4: (a) aggregate

functions and grouping; (b) OUTER JOIN operations; (c) recursive closure
queries.

A nested query is a query within a query. More specifically, a nested query is
a parenthesized query whose result can be used as a value in a number of
places, such as instead of a relation. Specify the following queries on the
database specified in Figure 3.5 using the concept of nested queries and the
relational operators discussed in this chapter. Also show the result of each
query as it would apply to the database state in Figure 3.6.

a. List the names of all employees who work in the department that has the
employee with the highest salary among all employees.

b. List the names of all employees whose supervisor’s supervisor has
888665555 for Ssn.

c. List the names of employees who make at least $10,000 more than the
employee who is paid the least in the company.

State whether the following conclusions are true or false:

a. NOT (P(x) OR Q(x)) — (NOT (P(x)) AND (NOT (Q(x)))

b. NOT (x) (P(x)) — V x (NOT (P(x))

c. (3x) (P(x)) = V x ((P(x))

Laboratory Exercises

6.34.

Specify and execute the following queries in relational algebra (RA) using
the RA interpreter on the COMPANY database schema in Figure 3.5.

a. List the names of all employees in department 5 who work more than 10
hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. List the names of employees who are directly supervised by Franklin
Wong.

d. List the names of employees who work on every project.
e. List the names of employees who do not work on any project.

f. List the names and addresses of employees who work on at least one proj-
ect located in Houston but whose department has no location in
Houston.

g. List the names of department managers who have no dependents.
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6.35. Consider the following MAILORDER relational schema describing the data
for a mail order company.

PARTS(Pno, Pname, Qoh, Price, Olevel)
CUSTOMERS(Cno, Cname, Street, Zip, Phone)
EMPLOYEES(Eno, Ename, Zip, Hdate)
ZIP_CODES(Zip, City)

ORDERS(Ono, Cno, Eno, Received, Shipped)
ODETAILS(Ono, Pno, Qty)

Qoh stands for quantity on hand: the other attribute names are self-
explanatory. Specify and execute the following queries using the RA inter-
preter on the MAILORDER database schema.

a. Retrieve the names of parts that cost less than $20.00.

b. Retrieve the names and cities of employees who have taken orders for
parts costing more than $50.00.

c. Retrieve the pairs of customer number values of customers who live in
the same ZIP Code.

d. Retrieve the names of customers who have ordered parts from employees
living in Wichita.

e. Retrieve the names of customers who have ordered parts costing less than
$20.00.

f. Retrieve the names of customers who have not placed an order.

g. Retrieve the names of customers who have placed exactly two orders.

6.36. Consider the following GRADEBOOK relational schema describing the data
for a grade book of a particular instructor. (Note: The attributes A, B, C, and
D of COURSES store grade cutoffs.)

CATALOG(Cno, Ctitle)

STUDENTS(Sid, Fname, Lname, Minit)
COURSES(Term, Sec no, Cno, A, B, C, D)
ENROLLS(Sid, Term, Sec no)

Specify and execute the following queries using the RA interpreter on the
GRADEBOOK database schema.

a. Retrieve the names of students enrolled in the Automata class during the
fall 2009 term.

b. Retrieve the Sid values of students who have enrolled in CSc226 and
CSc227.

c. Retrieve the Sid values of students who have enrolled in CSc226 or
CSc227.

d. Retrieve the names of students who have not enrolled in any class.

e. Retrieve the names of students who have enrolled in all courses in the
CATALOG table.
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6.37. Consider a database that consists of the following relations.

6.38.

6.39.

SUPPLIER(Sno, Sname)
PART(Pno, Pname)
PROJECT(Jno, Jname)
SUPPLY(Sno, Pno, Jno)

The database records information about suppliers, parts, and projects and
includes a ternary relationship between suppliers, parts, and projects. This
relationship is a many-many-many relationship. Specify and execute the fol-
lowing queries using the RA interpreter.

a.
b.

Retrieve the part numbers that are supplied to exactly two projects.

Retrieve the names of suppliers who supply more than two parts to proj-
ect J1.

c. Retrieve the part numbers that are supplied by every supplier.

d. Retrieve the project names that are supplied by supplier ‘S1” only.

. Retrieve the names of suppliers who supply at least two different parts

each to at least two different projects.

Specify and execute the following queries for the database in Exercise 3.16
using the RA interpreter.

a.

Retrieve the names of students who have enrolled in a course that uses a
textbook published by Addison-Wesley.

. Retrieve the names of courses in which the textbook has been changed at

least once.

. Retrieve the names of departments that adopt textbooks published by

Addison-Wesley only.

. Retrieve the names of departments that adopt textbooks written by

Navathe and published by Addison-Wesley.

. Retrieve the names of students who have never used a book (in a course)

written by Navathe and published by Addison-Wesley.

Repeat Laboratory Exercises 6.34 through 6.38 in domain relational calculus
(DRC) by using the DRC interpreter.
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chapter 7

Data Modeling Using the
Entity-Relationship (ER) Model

‘ onceptual modeling is a very important phase in
designing a successful database application.

Generally, the term database application refers to a particular database and the
associated programs that implement the database queries and updates. For exam-
ple, a BANK database application that keeps track of customer accounts would
include programs that implement database updates corresponding to customer
deposits and withdrawals. These programs provide user-friendly graphical user
interfaces (GUIs) utilizing forms and menus for the end users of the application—
the bank tellers, in this example. Hence, a major part of the database application will
require the design, implementation, and testing of these application programs.
Traditionally, the design and testing of application programs has been considered
to be part of software engineering rather than database design. In many software
design tools, the database design methodologies and software engineering method-
ologies are intertwined since these activities are strongly related.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present the
modeling concepts of the Entity-Relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.

199



200

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams'—are similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 7.1. We
present some of the UML notation and concepts for class diagrams that are partic-
ularly relevant to database design in Section 7.8, and briefly compare these to ER
notation and concepts. Additional UML notation and concepts are presented in
Section 8.6 and in Chapter 10.

This chapter is organized as follows: Section 7.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sample
database application in Section 7.2 to illustrate the use of concepts from the ER
model. This sample database is also used throughout the book. In Section 7.3 we
present the concepts of entities and attributes, and we gradually introduce the dia-
grammatic technique for displaying an ER schema. In Section 7.4 we introduce the
concepts of binary relationships and their roles and structural constraints. Section
7.5 introduces weak entity types. Section 7.6 shows how a schema design is refined
to include relationships. Section 7.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses how
to choose the names for database schema constructs. Section 7.8 introduces some
UML class diagram concepts, compares them to ER model concepts, and applies
them to the same database example. Section 7.9 discusses more complex types of
relationships. Section 7.10 summarizes the chapter.

The material in Sections 7.8 and 7.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 8, where we describe extensions to
the ER model that lead to the Enhanced-ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories). We
also introduce some additional UML concepts and notation in Chapter 8.

7.1 Using High-Level Conceptual Data Models
for Database Design

Figure 7.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

A class is similar to an entity type in many ways.
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REQUIREMENTS

COLLECTION AND
/ ANALYSIS

Functional Requirements Data Requirements
FU NCTIONiL ANALYSIS ‘ ‘ CONCEPTjAL DESIGN
High-Level Transaction Conceptual Schema
Specification (In a high-level data model)
T DBMS-independent LOGICAjDESIGN

DBMS-specific

(DATA MODEL MAPPING)

Logical (Conceptual) Schema
APPLICATION PROGRAM
DESIGN

'

PHYSICAL DESIGN

v Y

TRANSACTION | |nternal Schema
IMPLEMENTATION

¢ Figure 7.1

Application Programs

(In the data model of a specific DBMS)

201

A simplified diagram to illustrate the
main phases of database design.

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts. We give an overview of some of
these techniques in Chapter 10.

Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This
step is called conceptual design. The conceptual schema is a concise description of
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the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that the
requirements do not conflict. This approach enables database designers to concen-
trate on specifying the properties of the data, without being concerned with storage
and implementation details. This makes it is easier to create a good conceptual data-
base design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during func-
tional analysis. This also serves to confirm that the conceptual schema meets all the
identified functional requirements. Modifications to the conceptual schema can be
introduced if some functional requirements cannot be specified using the initial
schema.

The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational or the object-relational database model—so the
conceptual schema is transformed from the high-level data model into the imple-
mentation data model. This step is called logical design or data model mapping; its
result is a database schema in the implementation data model of the DBMS. Data
model mapping is often automated or semiautomated within the database design
tools.

The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application programs
are designed and implemented as database transactions corresponding to the high-
level transaction specifications. We discuss the database design process in more
detail in Chapter 10.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 8, when we intro-
duce the EER model.

7.2 A Sample Database Application

In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and proj-
ects. Suppose that after the requirements collection and analysis phase, the database
designers provide the following description of the miniworld—the part of the com-
pany that will be represented in the database.
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B The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the
department. We keep track of the start date when that employee began man-
aging the department. A department may have several locations.

B A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

® We store each employee’s name, Social Security number,? address, salary, sex
(gender), and birth date. An employee is assigned to one department, but
may work on several projects, which are not necessarily controlled by the
same department. We keep track of the current number of hours per week
that an employee works on each project. We also keep track of the direct
supervisor of each employee (who is another employee).

B We want to keep track of the dependents of each employee for insurance
purposes. We keep each dependent’s first name, sex, birth date, and relation-
ship to the employee.

Figure 7.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

7.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 7.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 7.3.2. Then, in Section 7.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. Relationships are
described in Section 7.4.

7.3.1 Entities and Attributes

Entities and Their Attributes. The basic object that the ER model represents is
an entity, which is a thing in the real world with an independent existence. An entity
may be an object with a physical existence (for example, a particular person, car,
house, or employee) or it may be an object with a conceptual existence (for instance,
a company, a job, or a university course). Each entity has attributes—the particular
properties that describe it. For example, an EMPLOYEE entity may be described by
the employee’s name, age, address, salary, and job. A particular entity will have a

?The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.
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WORKS_FOR !

N e

" Number_of_employees—| DEPARTMENT |

|

Supervisor

| DEPENDENT |

Figure 7.2

An ER schema diagram for the COMPANY database. The diagrammatic notation
is introduced gradually throughout this chapter and is summarized in Figure 7.14.

value for each of its attributes. The attribute values that describe each entity become
a major part of the data stored in the database.

Figure 7.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e, has four attributes: Name, Address, Age, and Home_phone; their values are
John Smith, 2311 Kirby, Houston, Texas 77001’, ‘55, and ‘713-749-2630’, respec-
tively. The COMPANY entity ¢, has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil, ‘Houston, and ‘John Smith, respectively.

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
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Name = John Smith Name = Sunco Oil

Address = 2311 Kirby
Houston, Texas 77001

e1 cq Headquarters = Houston

Age =55

Home_phone = 713-749-2630 President = John Smith

Figure 7.3

Two entities,
EMPLOYEE e, and
COMPANY c,, and
their attributes.

types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 7.3 can be subdivided into Street_address, City, State, and Zip,® with the
values 2311 Kirby’, ‘Houston, ‘Texas, and ‘77001. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 7.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its
components. If the composite attribute is referenced only as a whole, there is no

Address Figure 7.4
A hierarchy of composite
attributes.
Street_address City State Zip
Number Street Apartment_number

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.
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need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a set
of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have a
college degree, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for
the College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values
allowed for each individual entity. For example, the Colors attribute of a car may be
restricted to have between one and three values, if we assume that a car can have
three colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from
related entities; for example, an attribute Number_of_employees of a DEPARTMENT
entity can be derived by counting the number of employees related to (working
for) that department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have NULL
for College_degrees. NULL can also be used if we do not know the value of an attrib-
ute for a particular entity—for example, if we do not know the home phone num-
ber of John Smith’ in Figure 7.3. The meaning of the former type of NULL is not
applicable, whereas the meaning of the latter is unknown. The unknown category of
NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attrib-
utes can be nested arbitrarily. We can represent arbitrary nesting by grouping com-
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ponents of a composite attribute between parentheses () and separating the compo-
nents with commas, and by displaying multivalued attributes between braces { }.
Such attributes are called complex attributes. For example, if a person can have
more than one residence and each residence can have a single address and multiple
phones, an attribute Address_phone for a person can be specified as shown in Figure
7.5.2 Both Phone and Address are themselves composite attributes.

7.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 7.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes for
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{Address_phone( {Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip) )}

Figure 7.5
A complex attribute:
Address_phone.

Entity Type Name: EMPLOYEE COMPANY

Name, Age, Salary Name, Headquarters, President

4 N\

- N\

€1 o Cle

(John Smith, 55, 80k) (Sunco Oil, Houston, John Smith)

€2 o Co o

Entity Set:

(Extension) (Fast Computer, Dallas, Bob King)

(Fred Brown, 40, 30K)

€3 o

(Judy Clark, 25, 20K)

“4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 12).

Figure 7.6

Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.
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each. A few individual entities of each type are also illustrated, along with the values
of their attributes. The collection of all entities of a particular entity type in the data-
base at any point in time is called an entity set; the entity set is usually referred to
using the same name as the entity type. For example, EMPLOYEE refers to both a type
of entity as well as the current set of all employee entities in the database.

An entity type is represented in ER diagrams® (see Figure 7.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 7.7(a) shows a CAR entity type in this notation.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually

Figure 7.7 (a)
The CAR entity type

with two key attributes,
Registration and

Vehicle_id. (a) ER

diagram notation. (b)

Entity set with three

entities.

(b) CAR

Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}
( CAR; h
((ABC 128, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR,
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR,
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

.

. J

5We use a notation for ER diagrams that is close to the original proposed notation (Chen 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams and in Appendix A.
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has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 7.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social
Security number). Sometimes several attributes together form a key, meaning that
the combination of the attribute values must be distinct for each entity. If a set of
attributes possesses this property, the proper way to represent this in the ER model
that we describe here is to define a composite attribute and designate it as a key
attribute of the entity type. Notice that such a composite key must be minimal; that
is, all component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 7.7(a).

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 7.7) is a key in its
own right. The Registration attribute is an example of a composite key formed from
two simple component attributes, State and Number, neither of which is a key on its
own. An entity type may also have no key, in which case it is called a weak entity type
(see Section 7.5).

In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 3.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 7.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not displayed in ER diagrams, and are typically specified using the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. Additional data types to represent
common database types such as date, time, and other concepts are also employed.
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Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set® P(V) of V-

A:E—P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value is
represented by the empty set. For single-valued attributes, A(e) is restricted to being
a singleton set for each entity e in E, whereas there is no restriction on multivalued
attributes.” For a composite attribute A, the value set V is the power set of the
Cartesian product of P(V,), P(V,), ..., P(V,), where V, V,, ..., V, are the value sets
of the simple component attributes that form A:

V=P (P(V,)xP(V,) X..xP(V))

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld. They correspond to the data as it actually exists
in the miniworld.

7.3.3 Initial Conceptual Design of the COMPANY Database

We can now define the entity types for the COMPANY database, based on the
requirements described in Section 7.2. After defining several entity types and their
attributes here, we refine our design in Section 7.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 7.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 7.8):

1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and
Controlling_department. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be com-
posite attributes; however, this was not specified in the requirements. We
must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address.

4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

6The power set P(V) of a set Vis the set of all subsets of V.

A singleton set is a set with only one element (value).
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Figure 7.8
@ Employee Preliminary design of entity types
Deend for the COMPANY database.
elationship _ .
DEPENDENT Some of the shown attributes will

be refined into relationships.

So far, we have not represented the fact that an employee can work on several proj-
ects, nor have we represented the number of hours per week an employee works on
each project. This characteristic is listed as part of the third requirement in Section
7.2, and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it can be
represented as a multivalued composite attribute of PROJECT called Workers with
the simple components (Employee, Hours). We choose the first alternative in Figure
7.8, which shows each of the entity types just described. The Name attribute of
EMPLOYEE is shown as a composite attribute, presumably after consultation with
the users.
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7.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 7.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to an
employee who manages the department; the attribute Controlling_department of
PROJECT refers to the department that controls the project; the attribute Supervisor
of EMPLOYEE refers to another employee (the one who supervises this employee);
the attribute Department of EMPLOYEE refers to the department for which the
employee works; and so on. In the ER model, these references should not be repre-
sented as attributes but as relationships, which are discussed in this section. The
COMPANY database schema will be refined in Section 7.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

This section is organized as follows: Section 7.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 7.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 7.4.3. Section 7.4.4 shows how relationship
types can also have attributes.

74.1 Relationship Types, Sets, and Instances

A relationship type R among 7 entity types E,, E,, ..., E, defines a set of associa-
tions—or a relationship set—among entities from these entity types. As for the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances r, where each r; associates n
individual entities (e,, e,, ..., €,), and each entity e; in r; is a member of entity set Ej,
1 <j < n.Hence, a relationship set is a mathematical relation on E,, E,, ..., E,; alter-
natively, it can be defined as a subset of the Cartesian product of the entity sets E, X
E, X ... X E,. Each of the entity types E, E , ..., E, is said to participate in the rela-
tionship type R; similarly, each of the individual entities €}, €, ..., €, is said to
participate in the relationship instance r; = (e}, e), ..., €,).

Informally, each relationship instance r;in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance r; represents the fact that the entities participating in r,
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types EMPLOYEE
and DEPARTMENT, which associates each employee with the department for which
the employee works in the corresponding entity set. Each relationship instance in
the relationship set WORKS_FOR associates one EMPLOYEE entity and one
DEPARTMENT entity. Figure 7.9 illustrates this example, where each relationship
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EMPLOYEE WORKS_FOR DEPARTMENT

Figure 7.9

Some instances in the
WORKS_FOR relationship
set, which represents a
relationship type
WORKS_FOR between
EMPLOYEE and
DEPARTMENT.
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instance r; is shown connected to the EMPLOYEE and DEPARTMENT entities that
participate in r;. In the miniworld represented by Figure 7.9, employees e, e;, and e,
work for department d,; employees e, and e, work for department d,; and employ-
ees e; and e, work for department d,.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box (see
Figure 7.2).

74.2 Relationship Degree, Role Names,
and Recursive Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree two.
A relationship type of degree two is called binary, and one of degree three is called
ternary. An example of a ternary relationship is SUPPLY, shown in Figure 7.10,
where each relationship instance r; associates three entities—a supplier s, a part p,
and a project j—whenever s supplies part p to project j. Relationships can generally
be of any degree, but the ones most common are binary relationships. Higher-
degree relationships are generally more complex than binary relationships; we char-
acterize them further in Section 7.9.
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Figure 7.10

Some relationship instances in
the SUPPLY ternary relationship

set.

SUPPLIER SUPPLY PROJECT

Relationships as Attributes. It is sometimes convenient to think of a binary
relationship type in terms of attributes, as we discussed in Section 7.3.3. Consider
the WORKS_FOR relationship type in Figure 7.9. One can think of an attribute
called Department of the EMPLOYEE entity type, where the value of Department for
each EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 7.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attrib-
ute, we always have two options. In this example, the alternative is to think of a mul-
tivalued attribute Employee of the entity type DEPARTMENT whose values for each
DEPARTMENT entity is the set of EMPLOYEE entities who work for that department.
The value set of this Employee attribute is the power set of the EMPLOYEE entity set.
Either of these two attributes—Department of EMPLOYEE or Employee of
DEPARTMENT—can represent the WORKS_FOR relationship type. If both are repre-
sented, they are constrained to be inverses of each other.?

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 11), relationships can be represented by ref-
erence attributes, either in one direction or in both directions as inverses. In relational databases (see
Chapter 3), foreign keys are a type of reference attribute used to represent relationships.
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Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and helps to explain what the relationship means. For example, in the
WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and
DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be
used as the role name. However, in some cases the same entity type participates
more than once in a relationship type in different roles. In such cases the role name
becomes essential for distinguishing the meaning of the role that each participating
entity plays. Such relationship types are called recursive relationships. Figure 7.11
shows an example. The SUPERVISION relationship type relates an employee to a
supervisor, where both employee and supervisor entities are members of the same
EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in
SUPERVISION: once in the role of supervisor (or boss), and once in the role of
supervisee (or subordinate). Each relationship instance ,in SUPERVISION associates
two employee entities e; and e;, one of which plays the role of supervisor and the
other the role of supervisee. In Figure 7.11, the lines marked ‘1’ represent the super-
visor role, and those marked ‘2’ represent the supervisee role; hence, e, supervises e,
and e;, e, supervises e, and e,, and e, supervises e, and e,. In this example, each rela-
tionship instance must be connected with two lines, one marked with ‘1’ (supervi-
sor) and the other with 2’ (supervisee).
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EMPLOYEE SUPERVISION Figure 7.11

A recursive relationship
SUPERVISION between
EMPLOYEE in the
supervisor role (1) and
EMPLOYEE in the
subordinate role (2).
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74.3 Constraints on Binary Relationship Types

Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 7.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees,® but an employee can
be related to (work for) only one department. This means that for this particular
relationship WORKS_FOR, a particular department entity can be related to any
number of employees (N indicates there is no maximum number). On the other
hand, an employee can be related to a maximum of one department. The possible
cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 7.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage
one department only and a department can have one manager only. The relation-
ship type WORKS_ON (Figure 7.13) is of cardinality ratio M:N, because the mini-

Figure 7.12
A 1:1 relationship,
MANAGES.

EMPLOYEE MANAGES DEPARTMENT

9N stands for any number of related entities (zero or more).
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Figure 7.13
An M:N relationship,
WORKS_ON.

world rule is that an employee can work on several projects and a project can have
several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 7.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 7.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in, and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 7.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 7.12 we do not expect every employee
to manage a department, so the participation of EMPLOYEE in the MANAGES rela-
tionship type is partial, meaning that some or part of the set of employee entities are
related to some department entity via MANAGES, but not necessarily all. We will
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refer to the cardinality ratio and participation constraints, taken together, as the
structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a
double line connecting the participating entity type to the relationship, whereas par-
tial participation is represented by a single line (see Figure 7.2). Notice that in this
notation, we can either specify no minimum (partial participation) or a minimum
of one (total participation). The alternative notation (see Section 7.7.4) allows the
designer to specify a specific minimum number on participation in the relationship,
such as 4 or 5.

We will discuss constraints on higher-degree relationships in Section 7.9.

74.4 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that an employee works on a par-
ticular project, we can include an attribute Hours for the WORKS_ON relationship
type in Figure 7.13. Another example is to include the date on which a manager
started managing a department via an attribute Start_date for the MANAGES rela-
tionship type in Figure 7.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE or DEPARTMENT, although
conceptually it belongs to MANAGES. This is because MANAGES is a 1:1 relation-
ship, so every department or employee entity participates in at most one relationship
instance. Hence, the value of the Start_date attribute can be determined separately,
either by the participating department entity or by the participating employee
(manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 7.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for only one depart-
ment, and hence participates in at most one relationship instance in WORKS_FOR.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.

For M:N relationship types, some attributes may be determined by the combination
of participating entities in a relationship instance, not by any single entity. Such
attributes must be specified as relationship attributes. An example is the Hours attrib-
ute of the M:N relationship WORKS_ON (Figure 7.13); the number of hours per
week an employee currently works on a project is determined by an employee-
project combination and not separately by either entity.
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7.5 Weak Entity Types

Entity types that do not have key attributes of their own are called weak entity
types. In contrast, regular entity types that do have a key attribute—which include
all the examples discussed so far—are called strong entity types. Entities belonging
to a weak entity type are identified by being related to specific entities from another
entity type in combination with one of their attribute values. We call this other
entity type the identifying or owner entity type,'? and we call the relationship type
that relates a weak entity type to its owner the identifying relationship of the weak
entity type.!! A weak entity type always has a total participation constraint (existence
dependency) with respect to its identifying relationship because a weak entity can-
not be identified without an owner entity. However, not every existence dependency
results in a weak entity type. For example, a DRIVER_LICENSE entity cannot exist
unless it is related to a PERSON entity, even though it has its own key
(License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 7.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related
to 1t.

A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.'> In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Figure
7.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a composite attribute with component attrib-
utes Name, Birth_date, Sex, and Relationship. The choice of which representation to
use is made by the database designer. One criterion that may be used is to choose the

10The identifying entity type is also sometimes called the parent entity type or the dominant entity
type.

"The weak entity type is also sometimes called the child entity type or the subordinate entity type.

12The partial key is sometimes called the discriminator.
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weak entity type representation if there are many attributes. If the weak entity par-
ticipates independently in relationship types other than its identifying relationship
type, then it should not be modeled as a complex attribute.

In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 7.9.

7.6 Refining the ER Design for the COMPANY
Database

We can now refine the database design in Figure 7.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 7.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.

In our example, we specify the following relationship types:

B MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.
EMPLOYEE participation is partial. DEPARTMENT participation is not clear
from the requirements. We question the users, who say that a department
must have a manager at all times, which implies total participation.!® The
attribute Start_date is assigned to this relationship type.

B WORKS_FOR, a 1:N relationship type between DEPARTMENT and
EMPLOYEE. Both participations are total.

B CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is
determined to be partial, after consultation with the users indicates that
some departments may control no projects.

B SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

B WORKS_ON, determined to be an M:N relationship type with attribute
Hours, after the users indicate that a project can have several employees
working on it. Both participations are determined to be total.

B DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity

3The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.
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type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the above six relationship types, we remove from the entity types in
Figure 7.8 all attributes that have been refined into relationships. These include
Manager and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee
from DEPENDENT. It is important to have the least possible redundancy when we
design the conceptual schema of a database. If some redundancy is desired at the
storage level or at the user view level, it can be introduced later, as discussed in
Section 1.6.1.

7.7 ER Diagrams, Naming Conventions,
and Design Issues

7.71 Summary of Notation for ER Diagrams

Figures 7.9 through 7.13 illustrate examples of the participation of entity types in
relationship types by displaying their sets or extensions—the individual entity
instances in an entity set and the individual relationship instances in a relationship
set. In ER diagrams the emphasis is on representing the schemas rather than the
instances. This is more useful in database design because a database schema changes
rarely, whereas the contents of the entity sets change frequently. In addition, the
schema is obviously easier to display, because it is much smaller.

Figure 7.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Entity types such as EMPLOYEE,
DEPARTMENT, and PROJECT are shown in rectangular boxes. Relationship types
such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are shown in
diamond-shaped boxes attached to the participating entity types with straight lines.
Attributes are shown in ovals, and each attribute is attached by a straight line to its
entity type or relationship type. Component attributes of a composite attribute are
attached to the oval representing the composite attribute, as illustrated by the Name
attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as illus-
trated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship
type. The partial key of the weak entity type is underlined with a dotted line.

In Figure 7.2 the cardinality ratio of each binary relationship type is specified by
attaching a 1, M, or N on each participating edge. The cardinality ratio of
DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for DEPARTMENT:
EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The participation
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constraint is specified by a single line for partial participation and by double lines
for total participation (existence dependency).

In Figure 7.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relationship.
Notice that the cardinality ratio is 1:N from supervisor to supervisee because each
employee in the role of supervisee has at most one direct supervisor, whereas an
employee in the role of supervisor can supervise zero or more employees.

Figure 7.14 summarizes the conventions for ER diagrams. It is important to note
that there are many other alternative diagrammatic notations (see Section 7.7.4 and
Appendix A).

7.7.2 Proper Naming of Schema Constructs

When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to the
different constructs in the schema. We choose to use singular names for entity types,
rather than plural ones, because the entity type name applies to each individual
entity belonging to that entity type. In our ER diagrams, we will use the convention
that entity type and relationship type names are uppercase letters, attribute names
have their initial letter capitalized, and role names are lowercase letters. We have
used this convention in Figure 7.2.

As a general practice, given a narrative description of the database requirements, the
nouns appearing in the narrative tend to give rise to entity type names, and the verbs
tend to indicate names of relationship types. Attribute names generally arise from
additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 7.2. To explain this naming
convention further, we have one exception to the convention in Figure 7.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type).
To change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 7.4.

7.7.3 Design Choices for ER Conceptual Design

It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this
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Meaning Figure 7.14
Summary of the notation

Entity for ER diagrams.

Weak Entity

Relationship

Indentifying Relationship

Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

Total Participation of E, in R

Cardinality Ratio 1: N for E{:E, in R

(min, max)

Structural Constraint (min, max)
on Participation of E in R
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section, we give some brief guidelines as to which construct should be chosen in
particular situations.

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

B A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses
of one another are refined into a binary relationship. We discussed this type
of refinement in detail in Section 7.6. It is important to note that in
our notation, once an attribute is replaced by a relationship, the attribute
itself should be removed from the entity type to avoid duplication and
redundancy.

B Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that several
entity types in a UNIVERSITY database, such as STUDENT, INSTRUCTOR, and
COURSE, each has an attribute Department in the initial design; the designer
may then choose to create an entity type DEPARTMENT with a single attrib-
ute Dept_name and relate it to the three entity types (STUDENT,
INSTRUCTOR, and COURSE) via appropriate relationships. Other attrib-
utes/relationships of DEPARTMENT may be discovered later.

B An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In this
case, DEPARTMENT may be reduced or demoted to an attribute of STUDENT.

B Section 7.9 discusses choices concerning the degree of a relationship. In
Chapter 8, we discuss other refinements concerning specialization/general-
ization. Chapter 10 discusses additional top-down and bottom-up refine-
ments that are common in large-scale conceptual schema design.

7.74 Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 7.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double line notation for participation constraints. This notation involves
associating a pair of integer numbers (min, max) with each participation of an
entity type E in a relationship type R, where 0 < min < max and max > 1. The num-
bers mean that for each entity e in E, e must participate in at least min and at most
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max relationship instances in R at any point in time. In this method, min = 0 implies partial participation,
whereas min > 0 implies total participation.

Figure 7.15 displays the COMPANY database schema using the (min, max) notation.!* Usually, one uses
either the cardinality ratio/single-line/double-line notation or the (min, max) notation. The (min, max)

Figure 7.15
ER diagrams for the company schema, with structural con-
straints specified using (min, max) notation and role names.
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4In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 7.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).
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notation is more precise, and we can use it to specify some structural constraints for
relationship types of higher degree. However, it is not sufficient for specifying some
key constraints on higher-degree relationships, as discussed in Section 7.9.

Figure 7.15 also displays all the role names for the COMPANY database schema.

7.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here, and compare them with ER diagrams. In some
ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6, and in Chapter
10. Figure 7.16 shows how the COMPANY ER database schema in Figure 7.15 can be
displayed using UML class diagram notation. The entity types in Figure 7.15 are
modeled as classes in Figure 7.16. An entity in ER corresponds to an object in UML.

Figure 7.16

The COMPANY conceptual schema
in UML class diagram notation.
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In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 7.16) that includes three sections: The top section gives the class name
(similar to entity type name); the middle section includes the attributes; and the
last section includes operations that can be applied to individual objects (similar to
individual entities in an entity set) of the class. Operations are not specified in ER
diagrams. Consider the EMPLOYEE class in Figure 7.16. Its attributes are Name, Ssn,
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain of
an attribute if desired, by placing a colon (:) followed by the domain name or
description, as illustrated by the Name, Sex, and Bdate attributes of EMPLOYEE in
Figure 7.16. A composite attribute is modeled as a structured domain, as illustrated
by the Name attribute of EMPLOYEE. A multivalued attribute will generally be mod-
eled as a separate class, as illustrated by the LOCATION class in Figure 7.16.

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 7.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation.
However, the multiplicities are placed on the opposite ends of the relationship when
compared with the notation discussed in Section 7.7.4 (compare Figures 7.15 and
7.16). In UML, a single asterisk indicates a multiplicity of 0..x, and a single 1 indi-
cates a multiplicity of 1..1. A recursive relationship (see Section 7.4.2) is called a
reflexive association in UML, and the role names—like the multiplicities—are
placed at the opposite ends of an association when compared with the placing of
role names in Figure 7.15.

In UML, there are two types of relationships: association and aggregation.
Aggregation is meant to represent a relationship between a whole object and its
component parts, and it has a distinct diagrammatic notation. In Figure 7.16, we
modeled the locations of a department and the single location of a project as aggre-
gations. However, aggregation and association do not have different structural
properties, and the choice as to which type of relationship to use is somewhat sub-
jective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations (or
aggregations). In the unidirectional case, the line connecting the classes is displayed
with an arrow to indicate that only one direction for accessing related objects is
needed. If no arrow is displayed, the bidirectional case is assumed, which is the
default. For example, if we always expect to access the manager of a department
starting from a DEPARTMENT object, we would draw the association line represent-
ing the MANAGES association with an arrow from DEPARTMENT to EMPLOYEE. In
addition, relationship instances may be specified to be ordered. For example, we
could specify that the employee objects related to each department through the
WORKS_FOR association (relationship) should be ordered by their Salary attribute
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value. Association (relationship) names are optional in UML, and relationship
attributes are displayed in a box attached with a dashed line to the line representing
the association/aggregation (see Start_date and Hours in Figure 7.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 7.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 7.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion. Chapter 10 will introduce some of
these diagrams.

Weak entities can be modeled using the construct called qualified association (or
qualified aggregation) in UML; this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is illus-
trated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 7.16. The partial key Dependent_name is called the discriminator in UML ter-
minology, since its value distinguishes the objects associated with (related to) the
same EMPLOYEE. Qualified associations are not restricted to modeling weak enti-
ties, and they can be used to model other situations in UML.

This section is not meant to be a complete description of UML class diagrams, but
rather to illustrate one popular type of alternative diagrammatic notation that can
be used for representing ER modeling concepts.

7.9 Relationship Types of Degree
Higher than Two

In Section 7.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a rela-
tionship type of degree three ternary. In this section, we elaborate on the differences
between binary and higher-degree relationships, when to choose higher-degree ver-
sus binary relationships, and how to specify constraints on higher-degree relation-
ships.

79.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 7.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at
the entity set/relationship set or instance level in Figure 7.10. Recall that the rela-
tionship set of SUPPLY is a set of relationship instances (s, j, p), where s is a
SUPPLIER who is currently supplying a PART p to a PROJECT j. In general, a rela-
tionship type R of degree n will have n edges in an ER diagram, one connecting R to
each participating entity type.
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€))

(b)

Figure 7.17

Ternary relationship types. (a) The SUPPLY
relationship. (b) Three binary relationships
not equivalent to SUPPLY. (c) SUPPLY
represented as a weak entity type.

Figure 7.17(b) shows an ER diagram for three binary relationship types
CAN_SUPPLY, USES, and SUPPLIES. In general, a ternary relationship type repre-
sents different information than do three binary relationship types. Consider the
three binary relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
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some part to project j. The existence of three relationship instances (s, p), (j, p), and
(s,j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not necessarily imply
that an instance (s, j, p) exists in the ternary relationship SUPPLY, because the
meaning is different. It is often tricky to decide whether a particular relationship
should be represented as a relationship type of degree n or should be broken down
into several relationship types of smaller degrees. The designer must base this
decision on the semantics or meaning of the particular situation being represented.
The typical solution is to include the ternary relationship plus one or more of the
binary relationships, if they represent different meanings and if all are needed by the
application.

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 7.17(c)). Hence, an entity in the weak
entity type SUPPLY in Figure 7.17(c) is identified by the combination of its three
owner entities from SUPPLIER, PART, and PROJECT.

It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary N:1 relationships relate SUPPLY to the three participating entity types.

Another example is shown in Figure 7.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, ¢) whenever INSTRUCTOR i offers
COURSE ¢ during SEMESTER s. The three binary relationship types shown in
Figure 7.18 have the following meanings: CAN_TEACH relates a course to the
instructors who can teach that course, TAUGHT_DURING relates a semester to the
instructors who faught some course during that semester, and OFFERED_DURING

Figure 7.18

Another example of ternary versus

binary relationship types. I TAUGHT_DURING |
INSTRUCTOR @ SEMESTER

OFFERED_DURING

COURSE
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relates a semester to the courses offered during that semester by any instructor.
These ternary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, ¢) should not exist in OFFERS unless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, ¢) exists in OFFERED_DURING, and an instance (3,
c) exists in CAN_TEACH. However, the reverse is not always true; we may have
instances (i, s), (s, ¢), and (i, ¢) in the three binary relationship types with no corre-
sponding instance (i, s, ¢) in OFFERS. Note that in this example, based on the mean-
ings of the relationships, we can infer the instances of TAUGHT_DURING and
OFFERED_DURING from the instances in OFFERS, but we cannot infer the
instances of CAN_TEACH; therefore, TAUGHT_DURING and OFFERED_DURING are
redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relationship,
they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach one course, and a course
can be taught by only one instructor), then the ternary relationship OFFERS can be
left out because it can be inferred from the three binary relationships CAN_TEACH,
TAUGHT_DURING, and OFFERED_DURING. The schema designer must analyze the
meaning of each specific situation to decide which of the binary and ternary rela-
tionship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 7.19. This example shows part of a data-
base that keeps track of candidates interviewing for jobs at various companies, and
may be part of an employment agency database, for example. In the requirements, a
candidate can have multiple interviews with the same company (for example, with
different company departments or on separate dates), but a job offer is made based
on one of the interviews. Here, INTERVIEW is represented as a weak entity with two
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.
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A weak entity type INTERVIEW
with a ternary identifying rela-
tionship type.
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79.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 7.2. Here, a 1, M, or N is specified on each partici-
pation arc (both M and N symbols stand for many or any number).!> Let us illus-
trate this constraint using the SUPPLY relationship in Figure 7.17.

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 7.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying
key for the relationship set.!® If all three cardinalities are M or N, then the key will
be the combination of all three participants.

The second notation is based on the (min, max) notation displayed in Figure 7.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the relation-
ship set. These constraints have no bearing on determining the key of an n-ary rela-
tionship, where n > 2,17 but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

710 Summary

In this chapter we presented the modeling concepts of a high-level conceptual data
model, the Entity-Relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented a
sample set of database requirements for the COMPANY database, which is one of the
examples that is used throughout this book. We defined the basic ER model con-
cepts of entities and their attributes. Then we discussed NULL values and presented

15This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
16This is also true for cardinality ratios of binary relationships.

1"The (min, max) constraints can determine the keys for binary relationships, though.
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the various types of attributes, which can be nested arbitrarily to produce complex
attributes:

B Simple or atomic
m Composite
B Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the ER
model concepts at the schema or “intension” level:

Entity types and their corresponding entity sets
Key attributes of entity types

]

]

® Value sets (domains) of attributes

B Relationship types and their corresponding relationship sets
]

Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

B Cardinality ratios (1:1, 1:N, M:N for binary relationships)
® Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is
to specify minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type. We discussed weak entity types and the
related concepts of owner entity types, identifying relationship types, and partial
key attributes.

Entity-Relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they relate
to ER modeling concepts. We also described ternary and higher-degree relationship
types in more detail, and discussed the circumstances under which they are distin-
guished from binary relationships.

The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medical
information systems, and telecommunications—require additional concepts if we
want to model them with greater accuracy. We discuss some advanced modeling
concepts in Chapter 8 and revisit further advanced data modeling techniques in
Chapter 26.



234

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

Review Questions

7.1.

7.2.

7.3.

74.

7.5.
7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

Discuss the role of a high-level data model in the database design process.
List the various cases where use of a NULL value would be appropriate.

Define the following terms: entity, attribute, attribute value, relationship
instance, composite attribute, multivalued attribute, derived attribute, complex
attribute, key attribute, and value set (domain).

What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

Explain the difference between an attribute and a value set.

What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

What is a participation role? When is it necessary to use role names in the
description of relationship types?

Describe the two alternatives for specifying structural constraints on rela-
tionship types. What are the advantages and disadvantages of each?

Under what conditions can an attribute of a binary relationship type be
migrated to become an attribute of one of the participating entity types?

When we think of relationships as attributes, what are the value sets of these
attributes? What class of data models is based on this concept?

What is meant by a recursive relationship type? Give some examples of
recursive relationship types.

When is the concept of a weak entity used in data modeling? Define the
terms owner entity type, weak entity type, identifying relationship type, and
partial key.

Can an identifying relationship of a weak entity type be of a degree greater
than two? Give examples to illustrate your answer.

Discuss the conventions for displaying an ER schema as an ER diagram.

Discuss the naming conventions used for ER schema diagrams.

Exercises

7.16.

Consider the following set of requirements for a UNIVERSITY database that is
used to keep track of students’ transcripts. This is similar but not identical to
the database shown in Figure 1.2:

a. The university keeps track of each student’s name, student number, Social
Security number, current address and phone number, permanent address
and phone number, birth date, sex, class (freshman, sophomore, ..., grad-
uate), major department, minor department (if any), and degree program
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7.18.

7.19.

7.20.

(B.A., B.S,, ..., Ph.D.). Some user applications need to refer to the city,
state, and ZIP Code of the student’s permanent address and to the stu-
dent’s last name. Both Social Security number and student number have
unique values for each student.

b. Each department is described by a name, department code, office num-
ber, office phone number, and college. Both name and code have unique
values for each department.

c. Each course has a course name, description, course number, number of
semester hours, level, and offering department. The value of the course
number is unique for each course.

d. Each section has an instructor, semester, year, course, and section num-
ber. The section number distinguishes sections of the same course that are
taught during the same semester/year; its values are 1, 2, 3, ..., up to the
number of sections taught during each semester.

e. A grade report has a student, section, letter grade, and numeric grade (0,
1,2,3,0r4).

Design an ER schema for this application, and draw an ER diagram for the
schema. Specify key attributes of each entity type, and structural constraints
on each relationship type. Note any unspecified requirements, and make
appropriate assumptions to make the specification complete.

Composite and multivalued attributes can be nested to any number of levels.
Suppose we want to design an attribute for a STUDENT entity type to keep
track of previous college education. Such an attribute will have one entry for
each college previously attended, and each such entry will be composed of
college name, start and end dates, degree entries (degrees awarded at that
college, if any), and transcript entries (courses completed at that college, if
any). Each degree entry contains the degree name and the month and year
the degree was awarded, and each transcript entry contains a course name,
semester, year, and grade. Design an attribute to hold this information. Use
the conventions in Figure 7.5.

Show an alternative design for the attribute described in Exercise 7.17 that
uses only entity types (including weak entity types, if needed) and relation-
ship types.

Consider the ER diagram in Figure 7.20, which shows a simplified schema
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as pos-
sible in your requirements and constraints specification.

In Chapters 1 and 2, we discussed the database environment and database
users. We can consider many entity types to describe such an environment,
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to
specify all the entity types that can fully describe a database system and its
environment; then specify the relationship types among them, and draw an
ER diagram to describe such a general database environment.

Exercises
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Figure 7.20

An ER diagram for an AIRLINE database schema.
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Notes:
A LEG (segment) is a nonstop portion of a flight
A LEG_INSTANCE is a particular occurrence
of a LEG on a particular date.

21. Design an ER schema for keeping track of information about votes taken in

the U.S. House of Representatives during the current two-year congressional
session. The database needs to keep track of each U.S. STATE’s Name (e.g.,
“Texas’, ‘New York), ‘California’) and include the Region of the state (whose
domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, “‘West’}). Each
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7.23.

7.24.

7.25.

CONGRESS_PERSON in the House of Representatives is described by his or
her Name, plus the District represented, the Start_date when the congressper-
son was first elected, and the political Party to which he or she belongs
(whose domain is {‘Republican’, ‘Democrat), ‘Independent, ‘Other’}). The
database keeps track of each BILL (i.e., proposed law), including the
Bill_name, the Date_of vote on the bill, whether the bill Passed_or_failed
(whose domain is {Yes, ‘No’}), and the Sponsor (the congressperson(s) who
sponsored—that is, proposed—the bill). The database also keeps track of
how each congressperson voted on each bill (domain of Vote attribute is
{Yes’, ‘No) ‘Abstain’, ‘Absent’}). Draw an ER schema diagram for this applica-
tion. State clearly any assumptions you make.

A database is being constructed to keep track of the teams and games of a
sports league. A team has a number of players, not all of whom participate in
each game. It is desired to keep track of the players participating in each
game for each team, the positions they played in that game, and the result of
the game. Design an ER schema diagram for this application, stating any
assumptions you make. Choose your favorite sport (e.g., soccer, baseball,
football).

Consider the ER diagram shown in Figure 7.21 for part of a BANK database.
Each bank can have multiple branches, and each branch can have multiple
accounts and loans.

a. List the strong (nonweak) entity types in the ER diagram.

b. Is there a weak entity type? If so, give its name, partial key, and identifying
relationship.

c. What constraints do the partial key and the identifying relationship of the
weak entity type specify in this diagram?

d. List the names of all relationship types, and specify the (min, max) con-
straint on each participation of an entity type in a relationship type.
Justify your choices.

e. List concisely the user requirements that led to this ER schema design.

f. Suppose that every customer must have at least one account but is
restricted to at most two loans at a time, and that a bank branch cannot
have more than 1,000 loans. How does this show up on the (min, max)
constraints?

Consider the ER diagram in Figure 7.22. Assume that an employee may work
in up to two departments or may not be assigned to any department. Assume
that each department must have one and may have up to three phone num-
bers. Supply (min, max) constraints on this diagram. State clearly any addi-
tional assumptions you make. Under what conditions would the relationship
HAS_PHONE be redundant in this example?

Consider the ER diagram in Figure 7.23. Assume that a course may or may
not use a textbook, but that a text by definition is a book that is used in some
course. A course may not use more than five books. Instructors teach from

Exercises
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Figure 7.21
An ER diagram for a BANK
database schema.

EMPLOYEE

DEPARTMENT

Figure 7.22

Part of an ER diagram
for a COMPANY data-
base.
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Figure 7.23

Part of an ER diagram
for a COURSES data-
base.

7.26.

7.27.

two to four courses. Supply (min, max) constraints on this diagram. State
clearly any additional assumptions you make. If we add the relationship
ADOPTS, to indicate the textbook(s) that an instructor uses for a course,
should it be a binary relationship between INSTRUCTOR and TEXT, or a ter-
nary relationship between all three entity types? What (min, max) con-
straints would you put on it? Why?

Consider an entity type SECTION in a UNIVERSITY database, which describes
the section offerings of courses. The attributes of SECTION are
Section_number, Semester, Year, Course_number, Instructor, Room_no (where
section is taught), Building (where section is taught), Weekdays (domain is
the possible combinations of weekdays in which a section can be offered
{'MWF, ‘MW, “TT’, and so on}), and Hours (domain is all possible time peri-
ods during which sections are offered {*9-9:50 A.M., ‘10-10:50 A.M., ...,
3:30—4:50 P.M.’, ‘5:30—6:20 P.M., and so on}). Assume that Section_number is
unique for each course within a particular semester/year combination (that
is, if a course is offered multiple times during a particular semester, its sec-
tion offerings are numbered 1, 2, 3, and so on). There are several composite
keys for section, and some attributes are components of more than one key.
Identify three composite keys, and show how they can be represented in an
ER schema diagram.

Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2
1. STUDENT SOCIAL_SECURITY_CARD
STUDENT TEACHER

CLASSROOM WALL
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4. COUNTRY CURRENT_PRESIDENT
5. COURSE TEXTBOOK

6. ITEM (that can
be found in an

order) ORDER
STUDENT CLASS
CLASS INSTRUCTOR
INSTRUCTOR OFFICE
10. EBAY_AUCTION
_ITEM EBAY_BID

7.28. Consider the ER schema for the MOVIES database in Figure 7.24.

Assume that MOVIES is a populated database. ACTOR is used as a generic
term and includes actresses. Given the constraints shown in the ER schema,
respond to the following statements with True, False, or Maybe. Assign a
response of Maybe to statements that, while not explicitly shown to be True,
cannot be proven False based on the schema as shown. Justify each answer.

Figure 7.24
An ER diagram for a MOVIES
database schema.

PERFORMS_IN
MOVIE [=
LEAD_ROLE
1
ALSO_A_
DIRECTOR
ACTOR_ N
PRODUCER
DIRECTOR DIRECTS
M
PRODUCER PRODUCES
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Laboratory Exercises

. There are no actors in this database that have been in no movies.
. There are some actors who have acted in more than ten movies.
. Some actors have done a lead role in multiple movies.

. A movie can have only a maximum of two lead actors.

. Every director has been an actor in some movie.

. No producer has ever been an actor.

. A producer cannot be an actor in some other movie.

. There are movies with more than a dozen actors.

. Some producers have been a director as well.

. Most movies have one director and one producer.

. Some movies have one director but several producers.

. There are some actors who have done a lead role, directed a movie, and

produced some movie.

No movie has a director who also acted in that movie.

Given the ER schema for the MOVIES database in Figure 7.24, draw an
instance diagram using three movies that have been released recently. Draw
instances of each entity type: MOVIES, ACTORS, PRODUCERS, DIRECTORS
involved; make up instances of the relationships as they exist in reality for
those movies.

[lustrate the UML Diagram for Exercise 7.16. Your UML design should
observe the following requirements:

a.

b.

C.

A student should have the ability to compute his/her GPA and add or
drop majors and minors.

Each department should be to able add or delete courses and hire or ter-
minate faculty.

Each instructor should be able to assign or change a student’s grade for a
course.

Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises

7.31. Consider the UNIVERSITY database described in Exercise 7.16. Build the ER
schema for this database using a data modeling tool such as ERwin or
Rational Rose.

7.32.

Consider a MAIL_ORDER database in which employees take orders for parts
from customers. The data requirements are summarized as follows:

The mail order company has employees, each identified by a unique
employee number, first and last name, and Zip Code.

Each customer of the company is identified by a unique customer num-
ber, first and last name, and Zip Code.
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7.33.

7.34.

® Each part sold by the company is identified by a unique part number, a
part name, price, and quantity in stock.

® Each order placed by a customer is taken by an employee and is given a
unique order number. Each order contains specified quantities of one or
more parts. Each order has a date of receipt as well as an expected ship
date. The actual ship date is also recorded.

Design an Entity-Relationship diagram for the mail order database and
build the design using a data modeling tool such as ERwin or Rational Rose.

Consider a MOVIE database in which data is recorded about the movie indus-
try. The data requirements are summarized as follows:

® Each movie is identified by title and year of release. Each movie has a
length in minutes. Each has a production company, and each is classified
under one or more genres (such as horror, action, drama, and so forth).
Each movie has one or more directors and one or more actors appear in
it. Each movie also has a plot outline. Finally, each movie has zero or more
quotable quotes, each of which is spoken by a particular actor appearing
in the movie.

B Actors are identified by name and date of birth and appear in one or more
movies. Each actor has a role in the movie.

® Directors are also identified by name and date of birth and direct one or
more movies. It is possible for a director to act in a movie (including one
that he or she may also direct).

B Production companies are identified by name and each has an address. A
production company produces one or more movies.

Design an Entity-Relationship diagram for the movie database and enter the
design using a data modeling tool such as ERwin or Rational Rose.

Consider a CONFERENCE_REVIEW database in which researchers submit
their research papers for consideration. Reviews by reviewers are recorded
for use in the paper selection process. The database system caters primarily
to reviewers who record answers to evaluation questions for each paper they
review and make recommendations regarding whether to accept or reject the
paper. The data requirements are summarized as follows:

B Authors of papers are uniquely identified by e-mail id. First and last
names are also recorded.

® Each paper is assigned a unique identifier by the system and is described
by a title, abstract, and the name of the electronic file containing the
paper.

B A paper may have multiple authors, but one of the authors is designated
as the contact author.

® Reviewers of papers are uniquely identified by e-mail address. Each
reviewer’s first name, last name, phone number, affiliation, and topics of
interest are also recorded.



Selected Bibliography

® Each paper is assigned between two and four reviewers. A reviewer rates
each paper assigned to him or her on a scale of 1 to 10 in four categories:
technical merit, readability, originality, and relevance to the conference.
Finally, each reviewer provides an overall recommendation regarding
each paper.

® FEach review contains two types of written comments: one to be seen by
the review committee only and the other as feedback to the author(s).

Design an Entity-Relationship diagram for the CONFERENCE_REVIEW
database and build the design using a data modeling tool such as ERwin or
Rational Rose.

7.35. Consider the ER diagram for the AIRLINE database shown in Figure 7.20.
Build this design using a data modeling tool such as ERwin or Rational Rose.
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The Enhanced Entity-Relationship
(EER) Model

The ER modeling concepts discussed in Chapter 7
are sufficient for representing many database
schemas for traditional database applications, which include many data-processing
applications in business and industry. Since the late 1970s, however, designers of
database applications have tried to design more accurate database schemas that
reflect the data properties and constraints more precisely. This was particularly
important for newer applications of database technology, such as databases for
engineering design and manufacturing (CAD/CAM),! telecommunications, com-
plex software systems, and Geographic Information Systems (GIS), among many
other applications. These types of databases have more complex requirements than
do the more traditional applications. This led to the development of additional
semantic data modeling concepts that were incorporated into conceptual data mod-
els such as the ER model. Various semantic data models have been proposed in the
literature. Many of these concepts were also developed independently in related
areas of computer science, such as the knowledge representation area of artificial
intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data mod-
els, and show how the ER model can be enhanced to include these concepts, leading
to the Enhanced ER (EER) model.? We start in Section 8.1 by incorporating the con-
cepts of class/subclass relationships and type inheritance into the ER model. Then, in
Section 8.2, we add the concepts of specialization and generalization. Section 8.3

TCAD/CAM stands for computer-aided design/computer-aided manufacturing.
2EER has also been used to stand for Extended ER model.
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discusses the various types of constraints on specialization/generalization, and
Section 8.4 shows how the UNION construct can be modeled by including the con-
cept of category in the EER model. Section 8.5 gives a sample UNIVERSITY database
schema in the EER model and summarizes the EER model concepts by giving formal
definitions. We will use the terms object and entity interchangeably in this chapter,
because many of these concepts are commonly used in object-oriented models.

We present the UML class diagram notation for representing specialization and gen-
eralization in Section 8.6, and briefly compare these with EER notation and con-
cepts. This serves as an example of alternative notation, and is a continuation of
Section 7.8, which presented basic UML class diagram notation that corresponds to
the basic ER model. In Section 8.7, we discuss the fundamental abstractions that are
used as the basis of many semantic data models. Section 8.8 summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 8 should be consid-
ered a continuation of Chapter 7. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose to
skip some or all of the later sections of this chapter (Sections 8.4 through 8.8).

8.1 Subclasses, Superclasses, and Inheritance

The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 7. In addition, it includes the concepts of subclass and
superclass and the related concepts of specialization and generalization (see
Sections 8.2 and 8.3). Another concept included in the EER model is that of a
category or union type (see Section 8.4), which is used to represent a collection of
objects (entities) that is the union of objects of different entity types. Associated
with these concepts is the important mechanism of attribute and relationship
inheritance. Unfortunately, no standard terminology exists for these concepts, so
we use the most common terminology. Alternative terminology is given in foot-
notes. We also describe a diagrammatic technique for displaying these concepts
when they arise in an EER schema. We call the resulting schema diagrams
enhanced ER or EER diagrams.

The first Enhanced ER (EER) model concept we take up is that of a subtype or
subclass of an entity type. As we discussed in Chapter 7, an entity type is used to
represent both a type of entity and the entity set or collection of entities of that type
that exist in the database. For example, the entity type EMPLOYEE describes the type
(that is, the attributes and relationships) of each employee entity, and also refers to
the current set of EMPLOYEE entities in the COMPANY database. In many cases an
entity type has numerous subgroupings or subtypes of its entities that are meaning-
ful and need to be represented explicitly because of their significance to the database
application. For example, the entities that are members of the EMPLOYEE entity
type may be distinguished further into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set of
entities in each of the latter groupings is a subset of the entities that belong to the
EMPLOYEE entity set, meaning that every entity that is a member of one of these
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subgroupings is also an employee. We call each of these subgroupings a subclass or
subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is called the
superclass or supertype for each of these subclasses. Figure 8.1 shows how to repre-
sent these concepts diagramatically in EER diagrams. (The circle notation in Figure
8.1 will be explained in Section 8.2.)

We call the relationship between a superclass and any one of its subclasses a
superclass/subclass or supertype/subtype or simply class/subclass relationship.’
In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN are
two class/subclass relationships. Notice that a member entity of the subclass repre-
sents the same real-world entity as some member of the superclass; for example, a
SECRETARY entity Joan Logano’ is also the EMPLOYEE ‘Joan Logano. Hence, the
subclass member is the same as the entity in the superclass, but in a distinct specific
role. When we implement a superclass/subclass relationship in the database system,
however, we may represent a member of the subclass as a distinct database object—
say, a distinct record that is related via the key attribute to its superclass entity. In
Section 9.2, we discuss various options for representing superclass/subclass rela-
tionships in relational databases.

Typing_speed

Figure 8.1

EER diagram
notation to represent
subclasses and
specialization.

[ SECRETARY |[ TECHNICIAN][ ENGINEER |[ MANAGER | /CSalary > [HOURLY_EMPLOYEE |

| SALARIED_EMPLOYEE |

Three specializations of EMPLOYEE:

{SECRETARY, TECHNICIAN, ENGINEER} MANAGES
{MANAGER}

{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

PROJECT

3A class/subclass relationship is often called an 1S-A (or 1S-AN) relationship because of the way we
refer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, and
SO on.

BELONGS_TO

TRADE_UNION
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An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally
as a member of any number of subclasses. For example, a salaried employee who is
also an engineer belongs to the two subclasses ENGINEER and
SALARIED_EMPLOYEE of the EMPLOYEE entity type. However, it is not necessary
that every entity in a superclass is a member of some subclass.

An important concept associated with subclasses (subtypes) is that of type inheri-
tance. Recall that the fype of an entity is defined by the attributes it possesses and
the relationship types in which it participates. Because an entity in the subclass rep-
resents the same real-world entity from the superclass, it should possess values for
its specific attributes as well as values of its attributes as a member of the superclass.
We say that an entity that is a member of a subclass inherits all the attributes of the
entity as a member of the superclass. The entity also inherits all the relationships in
which the superclass participates. Notice that a subclass, with its own specific (or
local) attributes and relationships together with all the attributes and relationships
it inherits from the superclass, can be considered an entity type in its own right.*

8.2 Specialization and Generalization

8.2.1 Specialization

Specialization is the process of defining a set of subclasses of an entity type; this
entity type is called the superclass of the specialization. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic
of the entities in the superclass. For example, the set of subclasses {SECRETARY,
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee entity.
We may have several specializations of the same entity type based on different dis-
tinguishing characteristics. For example, another specialization of the EMPLOYEE
entity type may yield the set of subclasses {SALARIED_EMPLOYEE,
HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on
the method of pay.

Figure 8.1 shows how we represent a specialization diagrammatically in an EER dia-
gram. The subclasses that define a specialization are attached by lines to a circle that
represents the specialization, which is connected in turn to the superclass. The
subset symbol on each line connecting a subclass to the circle indicates the direction
of the superclass/subclass relationship.” Attributes that apply only to entities of a
particular subclass—such as TypingSpeed of SECRETARY—are attached to the rec-
tangle representing that subclass. These are called specific attributes (or local

“4In some object-oriented programming languages, a common restriction is that an entity (or object) has
only one type. This is generally too restrictive for conceptual database modeling.

5There are many alternative notations for specialization; we present the UML notation in Section 8.6 and
other proposed notations in Appendix A.
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attributes) of the subclass. Similarly, a subclass can participate in specific relation-
ship types, such as the HOURLY_EMPLOYEE subclass participating in the
BELONGS_TO relationship in Figure 8.1. We will explain the d symbol in the circles
in Figure 8.1 and additional EER diagram notation shortly.

Figure 8.2 shows a few entity instances that belong to subclasses of the
{SECRETARY, ENGINEER, TECHNICIAN} specialization. Again, notice that an entity
that belongs to a subclass represents the same real-world entity as the entity con-
nected to it in the EMPLOYEE superclass, even though the same entity is shown
twice; for example, e, is shown in both EMPLOYEE and SECRETARY in Figure 8.2. As
the figure suggests, a superclass/subclass relationship such as EMPLOYEE/
SECRETARY somewhat resembles a 1:1 relationship at the instance level (see Figure
7.12). The main difference is that in a 1:1 relationship two distinct entities are
related, whereas in a superclass/subclass relationship the entity in the subclass is the
same real-world entity as the entity in the superclass but is playing a specialized
role—for example, an EMPLOYEE specialized in the role of SECRETARY, or an
EMPLOYEE specialized in the role of TECHNICIAN.

249
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There are two main reasons for including class/subclass relationships and specializa-
tions in a data model. The first is that certain attributes may apply to some but not all
entities of the superclass. A subclass is defined in order to group the entities to which
these attributes apply. The members of the subclass may still share the majority of
their attributes with the other members of the superclass. For example, in Figure 8.1
the SECRETARY subclass has the specific attribute Typing_speed, whereas the
ENGINEER subclass has the specific attribute Eng_type, but SECRETARY and
ENGINEER share their other inherited attributes from the EMPLOYEE entity type.

The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 8.1.

In summary, the specialization process allows us to do the following:

® Define a set of subclasses of an entity type
m Establish additional specific attributes with each subclass

® Establish additional specific relationship types between each subclass and
other entity types or other subclasses

8.2.2 Generalization

We can think of a reverse process of abstraction in which we suppress the differences
among several entity types, identify their common features, and generalize them
into a single superclass of which the original entity types are special subclasses. For
example, consider the entity types CAR and TRUCK shown in Figure 8.3(a). Because
they have several common attributes, they can be generalized into the entity type
VEHICLE, as shown in Figure 8.3(b). Both CAR and TRUCK are now subclasses of the
generalized superclass VEHICLE. We use the term generalization to refer to the
process of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the inverse
of the specialization process. Hence, in Figure 8.3 we can view {CAR, TRUCK} as a
specialization of VEHICLE, rather than viewing VEHICLE as a generalization of CAR
and TRUCK. Similarly, in Figure 8.1 we can view EMPLOYEE as a generalization of
SECRETARY, TECHNICIAN, and ENGINEER. A diagrammatic notation to distinguish
between generalization and specialization is used in some design methodologies. An
arrow pointing to the generalized superclass represents a generalization, whereas
arrows pointing to the specialized subclasses represent a specialization. We will not
use this notation because the decision as to which process is followed in a particular
situation is often subjective. Appendix A gives some of the suggested alternative dia-
grammatic notations for schema diagrams and class diagrams.

So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a
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(@

No_of_passengers

Vehicle_id

Vehicle_id
VEHICLE
I

Vehicle_id

(b)

No_of_passengers

Tonnage

Figure 8.3
Generalization. (a) Two entity types, CAR and TRUCK. (b)
Generalizing CAR and TRUCK into the superclass VEHICLE.

superclass or subclass represents a collection of entities of the same type and hence
also describes an entity type; that is why superclasses and subclasses are all shown in
rectangles in EER diagrams, like entity types. Next, we discuss the properties of spe-
cializations and generalizations in more detail.

8.3 Constraints and Characteristics
of Specialization and Generalization
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it
applies to both specialization and generalization. Then, we discuss differences
between specialization/generalization lattices (multiple inheritance) and hierarchies
(single inheritance), and elaborate on the differences between the specialization and
generalization processes during conceptual database schema design.

8.3.1 Constraints on Specialization and Generalization

In general, we may have several specializations defined on the same entity type (or
superclass), as shown in Figure 8.1. In such a case, entities may belong to subclasses
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in each of the specializations. However, a specialization may also consist of a single
subclass only, such as the {MANAGER} specialization in Figure 8.1; in such a case, we
do not use the circle notation.

In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of
the superclass. Such subclasses are called predicate-defined (or condition-defined)
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as
shown in Figure 8.4, we can specify the condition of membership in the
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the
defining predicate of the subclass. This condition is a constraint specifying that
exactly those entities of the EMPLOYEE entity type whose attribute value for
Job_type is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass
by writing the predicate condition next to the line that connects the subclass to the
specialization circle.

If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined spe-
cialization, and the attribute is called the defining attribute of the specialization.® In
this case, all the entities with the same value for the attribute belong to the same sub-
class. We display an attribute-defined specialization by placing the defining attribute
name next to the arc from the circle to the superclass, as shown in Figure 8.4.

When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for each entity by the user, not by any condition
that may be evaluated automatically.

Figure 8.4

EER diagram notation
for an attribute-defined
specialization on
Job_type.

| SECRETARY | | TECHNICIAN| | ENGINEER |

6Such an attribute is called a discriminator in UML terminology.
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Two other constraints may apply to a specialization. The first is the disjointness (or
disjointedness) constraint, which specifies that the subclasses of the specialization
must be disjoint. This means that an entity can be a member of at most one of the
subclasses of the specialization. A specialization that is attribute-defined implies the
disjointness constraint (if the attribute used to define the membership predicate is
single-valued). Figure 8.4 illustrates this case, where the d in the circle stands for
disjoint. The d notation also applies to user-defined subclasses of a specialization
that must be disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE,
SALARIED_EMPLOYEE} in Figure 8.1. If the subclasses are not constrained to be dis-
joint, their sets of entities may be overlapping; that is, the same (real-world) entity
may be a member of more than one subclass of the specialization. This case, which
is the default, is displayed by placing an o in the circle, as shown in Figure 8.5.

The second constraint on specialization is called the completeness (or totalness)
constraint, which may be total or partial. A total specialization constraint specifies
that every entity in the superclass must be a member of at least one subclass in the
specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 8.1 is a total specialization
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect the
superclass to the circle. A single line is used to display a partial specialization,
which allows an entity not to belong to any of the subclasses. For example, if some
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY,
ENGINEER, TECHNICIAN} in Figures 8.1 and 8.4, then that specialization is partial.”

Notice that the disjointness and completeness constraints are independent. Hence,
we have the following four possible constraints on specialization:
® Disjoint, total
® Disjoint, partial
® Overlapping, total
]

Overlapping, partial

Manufacture_date

|
Supplier_name

| MANUFACTURED_PART | | PURCHASED_PART |

"The notation of using single or double lines is similar to that for partial or total participation of an entity
type in a relationship type, as described in Chapter 7.

Figure 8.5

EER diagram notation
for an overlapping
(nondisjoint)
specialization.
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Of course, the correct constraint is determined from the real-world meaning that
applies to each specialization. In general, a superclass that was identified through
the generalization process usually is total, because the superclass is derived from the
subclasses and hence contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

B Deleting an entity from a superclass implies that it is automatically deleted
from all the subclasses to which it belongs.

B Inserting an entity in a superclass implies that the entity is mandatorily
inserted in all predicate-defined (or attribute-defined) subclasses for which
the entity satisfies the defining predicate.

B Inserting an entity in a superclass of a total specialization implies that the
entity is mandatorily inserted in at least one of the subclasses of the special-
ization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

8.3.2 Specialization and Generalization Hierarchies
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or a
lattice of specializations. For example, in Figure 8.6 ENGINEER is a subclass of
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents
the real-world constraint that every engineering manager is required to be an engi-
neer. A specialization hierarchy has the constraint that every subclass participates
as a subclass in only one class/subclass relationship; that is, each subclass has only

Figure 8.6

A specialization lattice with shared subclass
ENGINEERING_MANAGER.

EMPLOYEE

SECRETARY || TECHNICIAN || ENGINEER || MANAGER |

| HOURLY_EMPLOYEE

| SALARIED_EMPLOYEE |

Y &

ENGINEERING_MANAGER |
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one parent, which results in a tree structure or strict hierarchy. In contrast, for a
specialization lattice, a subclass can be a subclass in more than one class/subclass
relationship. Hence, Figure 8.6 is a lattice.

Figure 8.7 shows another specialization lattice of more than one level. This may be
part of a conceptual schema for a UNIVERSITY database. Notice that this arrange-
ment would have been a hierarchy except for the STUDENT_ASSISTANT subclass,
which is a subclass in two distinct class/subclass relationships.

The requirements for the part of the UNIVERSITY database shown in Figure 8.7 are
the following:

1. The database keeps track of three types of persons: employees, alumni, and
students. A person can belong to one, two, or all three of these types. Each
person has a name, SSN, sex, address, and birth date.

2. Every employee has a salary, and there are three types of employees: faculty,
staff, and student assistants. Each employee belongs to exactly one of these
types. For each alumnus, a record of the degree or degrees that he or she

Figure 8.7

A specialization lattice
with multiple inheritance
for a UNIVERSITY

database.
| EMPLOYEE | ]ALUMNUS\ | STUDENT |
D
/ @
STAFF FACULTY | | STUDENT_ GRADUATE_ |  [UNDERGRADUATE_

ASSISTANT STUDENT STUDENT

| RESEARCH_ASSISTANT‘ | TEACHING_ASSISTANT |




256

Chapter 8 The Enhanced Entity-Relationship (EER) Model

earned at the university is kept, including the name of the degree, the year
granted, and the major department. Each student has a major department.

3. Each faculty has a rank, whereas each staff member has a staff position.
Student assistants are classified further as either research assistants or teach-
ing assistants, and the percent of time that they work is recorded in the data-
base. Research assistants have their research project stored, whereas teaching
assistants have the current course they work on.

4. Students are further classified as either graduate or undergraduate, with the
specific attributes degree program (M.S., Ph.D., M.B.A., and so on) for
graduate students and class (freshman, sophomore, and so on) for under-
graduates.

In Figure 8.7, all person entities represented in the database are members of the
PERSON entity type, which is specialized into the subclasses {EMPLOYEE,
ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alumnus
may also be an employee and may also be a student pursuing an advanced degree.
The subclass STUDENT is the superclass for the specialization
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}, while EMPLOYEE is the
superclass for the specialization {STUDENT_ASSISTANT, FACULTY, STAFF}. Notice
that STUDENT_ASSISTANT is also a subclass of STUDENT. Finally,
STUDENT_ASSISTANT is the superclass for the specialization into
{RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not
only of its direct superclass, but also of all its predecessor superclasses all the way to
the root of the hierarchy or lattice if necessary. For example, an entity in
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as
a PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy,
where a leaf node is a class that has no subclasses of its own. For example, a member
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more than one superclass is called a shared subclass, such as
ENGINEERING_MANAGER in Figure 8.6. This leads to the concept known as
multiple inheritance, where the shared subclass ENGINEERING_MANAGER directly
inherits attributes and relationships from multiple classes. Notice that the existence
of at least one shared subclass leads to a lattice (and hence to multiple inheritance);
if no shared subclasses existed, we would have a hierarchy rather than a lattice and
only single inheritance would exist. An important rule related to multiple inheri-
tance can be illustrated by the example of the shared subclass STUDENT_ASSISTANT
in Figure 8.7, which inherits attributes from both EMPLOYEE and STUDENT. Here,
both EMPLOYEE and STUDENT inherit the same attributes from PERSON. The rule
states that if an attribute (or relationship) originating in the same superclass
(PERSON) is inherited more than once via different paths (EMPLOYEE and
STUDENT) in the lattice, then it should be included only once in the shared subclass
(STUDENT_ASSISTANT). Hence, the attributes of PERSON are inherited only once in
the STUDENT_ASSISTANT subclass in Figure 8.7.
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It is important to note here that some models and languages are limited to single
inheritance and do not allow multiple inheritance (shared subclasses). It is also
important to note that some models do not allow an entity to have multiple types,
and hence an entity can be a member of only one leaf class.® In such a model, it is
necessary to create additional subclasses as leaf nodes to cover all possible combina-
tions of classes that may have some entity that belongs to all these classes simultane-
ously. For example, in the overlapping specialization of PERSON into {EMPLOYEE,
ALUMNUS, STUDENT} (or {E, A, S} for short), it would be necessary to create seven
subclasses of PERSON in order to cover all possible types of entities: E, A, S, E_A,
E_S,A_S,and E_A_S. Obviously, this can lead to extra complexity.

Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section.
Hence, we can also speak of generalization hierarchies and generalization lattices.

8.3.3 Utilizing Specialization and Generalization
in Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization
processes, and how they are used to refine conceptual schemas during conceptual
database design. In the specialization process, we typically start with an entity type
and then define subclasses of the entity type by successive specialization; that is, we
repeatedly define more specific groupings of the entity type. For example, when
designing the specialization lattice in Figure 8.7, we may first specify an entity type
PERSON for a university database. Then we discover that three types of persons will
be represented in the database: university employees, alumni, and students. We cre-
ate the specialization {EMPLOYEE, ALUMNUS, STUDENT} for this purpose and
choose the overlapping constraint, because a person may belong to more than one
of the subclasses. We specialize EMPLOYEE further into {STAFF, FACULTY,
STUDENT_ASSISTANT}, and specialize STUDENT into {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT}. Finally, we specialize STUDENT_ASSISTANT into
{RESEARCH_ASSISTANT, TEACHING_ASSISTANT}. This successive specialization
corresponds to a top-down conceptual refinement process during conceptual
schema design. So far, we have a hierarchy; then we realize that
STUDENT_ASSISTANT is a shared subclass, since it is also a subclass of STUDENT,
leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In
such a case, the process involves generalization rather than specialization and corre-
sponds to a bottom-up conceptual synthesis. For example, the database designers
may first discover entity types such as STAFF, FACULTY, ALUMNUS,
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT,

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.
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UNDERGRADUATE_STUDENT} into STUDENT; then they generalize
{RESEARCH_ASSISTANT, TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then
they generalize {STAFF, FACULTY, STUDENT_ASSISTANT} into EMPLOYEE; and
finally they generalize {EMPLOYEE, ALUMNUS, STUDENT} into PERSON.

In structural terms, hierarchies or lattices resulting from either process may be iden-
tical; the only difference relates to the manner or order in which the schema super-
classes and subclasses were created during the design process. In practice, it is likely
that neither the generalization process nor the specialization process is followed
strictly, but that a combination of the two processes is employed. New classes are
continually incorporated into a hierarchy or lattice as they become apparent to users
and designers. Notice that the notion of representing data and knowledge by using
superclass/subclass hierarchies and lattices is quite common in knowledge-based sys-
tems and expert systems, which combine database technology with artificial intelli-
gence techniques. For example, frame-based knowledge representation schemes
closely resemble class hierarchies. Specialization is also common in software engi-
neering design methodologies that are based on the object-oriented paradigm.

8.4 Modeling of UNION Types Using Categories

All of the superclass/subclass relationships we have seen thus far have a single super-
class. A shared subclass such as ENGINEERING_MANAGER in the lattice in Figure
8.6 is the subclass in three distinct superclass/subclass relationships, where each of
the three relationships has a single superclass. However, it is sometimes necessary to
represent a single superclass/subclass relationship with more than one superclass,
where the superclasses represent different entity types. In this case, the subclass will
represent a collection of objects that is a subset of the UNION of distinct entity types;
we call such a subclass a union type or a category.’

For example, suppose that we have three entity types: PERSON, BANK, and
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can be
a person, a bank (holding a lien on a vehicle), or a company. We need to create a
class (collection of entities) that includes entities of all three types to play the role of
vehicle owner. A category (union type) OWNER that is a subclass of the UNION of the
three entity sets of COMPANY, BANK, and PERSON can be created for this purpose.
We display categories in an EER diagram as shown in Figure 8.8. The superclasses
COMPANY, BANK, and PERSON are connected to the circle with the U symbol,
which stands for the set union operation. An arc with the subset symbol connects the
circle to the (subclass) OWNER category. If a defining predicate is needed, it is dis-
played next to the line from the superclass to which the predicate applies. In Figure
8.8 we have two categories: OWNER, which is a subclass of the union of PERSON,
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass of the union
of CAR and TRUCK.

90ur use of the term category is based on the ECR (Entity-Category-Relationship) model (Elmasri et al.
1985).
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@ @ Two categories (union
types): OWNER and
@ @ REGISTERED_VEHICLE.

A category has two or more superclasses that may represent distinct entity types,
whereas other superclass/subclass relationships always have a single superclass. To
better understand the difference, we can compare a category, such as OWNER in
Figure 8.8, with the ENGINEERING_MANAGER shared subclass in Figure 8.6. The
latter is a subclass of each of the three superclasses ENGINEER, MANAGER, and
SALARIED_EMPLOYEE, so an entity that is a member of ENGINEERING_MANAGER
must exist in all three. This represents the constraint that an engineering manager
must be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is,
ENGINEERING_MANAGER is a subset of the intersection of the three classes (sets of
entities). On the other hand, a category is a subset of the union of its superclasses.
Hence, an entity that is a member of OWNER must exist in only one of the super-
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classes. This represents the constraint that an OWNER may be a COMPANY, a BANK,
or a PERSON in Figure 8.8.

Attribute inheritance works more selectively in the case of categories. For example,
in Figure 8.8 each OWNER entity inherits the attributes of a COMPANY, a PERSON,
or a BANK, depending on the superclass to which the entity belongs. On the other
hand, a shared subclass such as ENGINEERING_MANAGER (Figure 8.6) inherits all
the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER, and
MANAGER.

It is interesting to note the difference between the category REGISTERED_VEHICLE
(Figure 8.8) and the generalized superclass VEHICLE (Figure 8.3(b)). In Figure
8.3(b), every car and every truck is a VEHICLE; but in Figure 8.8, the
REGISTERED_VEHICLE category includes some cars and some trucks but not neces-
sarily all of them (for example, some cars or trucks may not be registered). In gen-
eral, a specialization or generalization such as that in Figure 8.3(b), if it were partial,
would not preclude VEHICLE from containing other types of entities, such as
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 8.8
implies that only cars and trucks, but not other types of entities, can be members of
REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subset of the union. A total cat-
egory is represented diagrammatically by a double line connecting the category and
the circle, whereas a partial category is indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated by
the OWNER category in Figure 8.8, or they may have the same key attribute, as
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is
total (not partial), it may be represented alternatively as a total specialization (or a
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.

It is important to note that some modeling methodologies do not have union types.
In these models, a union type must be represented in a roundabout way (see Section
9.2).

8.5 A Sample UNIVERSITY EER Schema,
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to
illustrate the use of the various concepts discussed here and in Chapter 7. Then, we
discuss design choices for conceptual schemas, and finally we summarize the EER
model concepts and define them formally in the same manner in which we formally
defined the concepts of the basic ER model in Chapter 7.
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8.5.1 The UNIVERSITY Database Example

For our sample database application, consider a UNIVERSITY database that keeps
track of students and their majors, transcripts, and registration as well as of the uni-
versity’s course offerings. The database also keeps track of the sponsored research
projects of faculty and graduate students. This schema is shown in Figure 8.9. A dis-
cussion of the requirements that led to this schema follows.

For each person, the database maintains information on the person’s Name [Name],
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate].
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT.
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct,
research, visiting, and so on), office [Foffice], office phone [Fphone], and salary
[Salary]. All faculty members are related to the academic department(s) with which
they are affiliated [BELONGS] (a faculty member can be associated with several
departments, so the relationship is M:N). A specific attribute of STUDENT is [Class]
(freshman=1, sophomore=2, ..., graduate student=5). Each STUDENT is also related
to his or her major and minor departments (if known) [MAJOR] and [MINOR], to
the course sections he or she is currently attending [REGISTERED], and to the
courses completed [TRANSCRIPT]. Each TRANSCRIPT instance includes the grade
the student received [Grade] in a section of a course.

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate Class = 5.
For each graduate student, we keep a list of previous degrees in a composite, multi-
valued attribute [Degrees]. We also relate the graduate student to a faculty advisor
[ADVISOR] and to a thesis committee [COMMITTEE], if one exists.

An academic department has the attributes name [Dname], telephone [Dphone], and
office number [Office] and is related to the faculty member who is its chairperson
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes
college name [Cname], office number [Coffice], and the name of its dean [Dean].

A course has attributes course number [C#], course name [Cname], and course
description [Cdesc]. Several sections of each course are offered, with each section
having the attributes section number [Sec#] and the year and quarter in which the
section was offered ([Year] and [Qtr]).!? Section numbers uniquely identify each sec-
tion. The sections being offered during the current quarter are in a subclass
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_gtr and
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of
research grants and contracts awarded to the university. Each grant has attributes
grant title [Title], grant number [No], the awarding agency [Agency], and the starting

10We assume that the quarter system rather than the semester system is used in this university.



262  Chapter 8 The Enhanced Entity-Relationship (EER) Model

CEramo ) (i) CLname ) (Son ) (Baate) (o) (o)) (Steet) Captno) (Ciy) (State) (Zip)

(Name) PERSON

(Rank)-{__FACULTY ADVISOR > College (Year) STUDENT
Class=5

| GRAD_STUDENT

M N
COMMITTEE

M
1| <BELONGS
| INSTRUCTOR_RESEARCHER
1
CHAIRS
1
N CURRENT_SECTION |
Qtr = Current_qtr and (
Year = Current_year
| DEPARTMENT
Figure 8.9

An EER conceptual schema
for a UNIVERSITY database.
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date [St_date]. A grant is related to one principal investigator [PI] and to all
researchers it supports [SUPPORT]. Each instance of support has as attributes the
starting date of support [Start], the ending date of the support (if known) [End],
and the percentage of time being spent on the project [Time] by the researcher being
supported.

8.5.2 Design Choices for Specialization/Generalization

It is not always easy to choose the most appropriate conceptual design for a database
application. In Section 7.7.3, we presented some of the typical issues that confront a
database designer when choosing among the concepts of entity types, relationship
types, and attributes to represent a particular miniworld situation as an ER schema.
In this section, we discuss design guidelines and choices for the EER concepts of
specialization/generalization and categories (union types).

As we mentioned in Section 7.7.3, conceptual database design should be considered
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

B In general, many specializations and subclasses can be defined to make the
conceptual model accurate. However, the drawback is that the design
becomes quite cluttered. It is important to represent only those subclasses
that are deemed necessary to avoid extreme cluttering of the conceptual
schema.

B If a subclass has few specific (local) attributes and no specific relationships, it
can be merged into the superclass. The specific attributes would hold NULL
values for entities that are not members of the subclass. A type attribute
could specify whether an entity is a member of the subclass.

® Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the
superclass and replaced with one or more type attributes that specify the sub-
class or subclasses that each entity belongs to (see Section 9.2 for how this
criterion applies to relational databases).

® Union types and categories should generally be avoided unless the situation
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generalization
as discussed at the end of Section 8.4.

® The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being modeled.
If the requirements do not indicate any particular constraints, the default
would generally be overlapping and partial, since this does not specify any
restrictions on subclass membership.
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As an example of applying these guidelines, consider Figure 8.6, where no specific
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE
entity type, and add the following attributes to EMPLOYEE:

B An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, “Technician’}
would indicate which subclass in the first specialization each employee
belongs to.

B An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would indicate
which subclass in the second specialization each employee belongs to.

B An attribute Is_a_manager whose value set {‘Yes, ‘No’} would indicate
whether an individual employee entity is a manager or not.

8.5.3 Formal Definitions for the EER Model Concepts

We now summarize the EER model concepts and give formal definitions. A class!!
is a set or collection of entities; this includes any of the EER schema constructs of
group entities, such as entity types, subclasses, superclasses, and categories. A
subclass S is a class whose entities must always be a subset of the entities in another
class, called the superclass C of the superclass/subclass (or IS-A) relationship. We
denote such a relationship by C/S. For such a superclass/subclass relationship, we
must always have

ScC

A specialization Z = {S,, S, ..., S, } is a set of subclasses that have the same super-
class G; that is, G/S; is a superclass/subclass relationship for i =1, 2, ..., n. G is called
a generalized entity type (or the superclass of the specialization, or a
generalization of the subclasses {S,, S,, ..., S, } ). Zis said to be total if we always (at
any point in time) have

Us =G

=1

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have
SN = & (empty set) for i #j

Otherwise, Z is said to be overlapping.

A subclass S of C is said to be predicate-defined if a predicate p on the attributes of
C is used to specify which entities in C are members of S; that is, S = C[p], where
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a pred-
icate is called user-defined.

A specialization Z (or generalization G) is said to be attribute-defined if a predicate
(A =c;), where A is an attribute of G and c; is a constant value from the domain of A,

"The use of the word class here differs from its more common use in object-oriented programming lan-
guages such as C++. In C++, a class is a structured type definition along with its applicable functions
(operations).
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is used to specify membership in each subclass S; in Z. Notice that if ¢; # ¢; for i # j,
and A is a single-valued attribute, then the specialization will be disjoint.

A category T'is a class that is a subset of the union of n defining superclasses D,, D,,
..., D, n>1,and is formally specified as follows:

Tc(D,uD,..uD,)

A predicate p; on the attributes of D; can be used to specify the members of each D,
that are members of T. If a predicate is specified on every D, we get

T = (D,[p,] W D,[p,] ...uD,[p,])

We should now extend the definition of relationship type given in Chapter 7 by
allowing any class—not only any entity type—to participate in a relationship.
Hence, we should replace the words entity type with class in that definition. The
graphical notation of EER is consistent with ER because all classes are represented
by rectangles.

8.6 Example of Other Notation: Representing
Specialization and Generalization in UML
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology in
Section 7.8. Figure 8.10 illustrates a possible UML class diagram corresponding to
the EER diagram in Figure 8.7. The basic notation for specialization/generalization
(see Figure 8.10) is to connect the subclasses by vertical lines to a horizontal line,
which has a triangle connecting the horizontal line through another vertical line to
the superclass. A blank triangle indicates a specialization/generalization with the
disjoint constraint, and a filled triangle indicates an overlapping constraint. The root
superclass is called the base class, and the subclasses (leaf nodes) are called leaf
classes.

The above discussion and example in Figure 8.10, and the presentation in Section
7.8 gave a brief overview of UML class diagrams and terminology. We focused on
the concepts that are relevant to ER and EER database modeling, rather than those
concepts that are more relevant to software engineering. In UML, there are many
details that we have not discussed because they are outside the scope of this book
and are mainly relevant to software engineering. For example, classes can be of var-
ious types:

B Abstract classes define attributes and operations but do not have objects cor-
responding to those classes. These are mainly used to specify a set of attrib-
utes and operations that can be inherited.

® Concrete classes can have objects (entities) instantiated to belong to the
class.

® Template classes specify a template that can be further used to define other
classes.
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Figure 8.10

A UML class diagram corresponding to the EER diagram in Figure 8.7,
illustrating UML notation for specialization/generalization.

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that
describe complete details of UML. Additional material related to UML is covered in
Chapter 10.
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8.7 Data Abstraction, Knowledge
Representation, and Ontology Concepts

In this section we discuss in general terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EER models in
Chapter 7 and earlier in this chapter. This terminology is not only used in concep-
tual data modeling but also in artificial intelligence literature when discussing
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces
some of the alternative terminology and a few additional concepts.

The goal of KR techniques is to develop concepts for accurately modeling some
domain of knowledge by creating an ontology'? that describes the concepts of the
domain and how these concepts are interrelated. Such an ontology is used to store
and manipulate knowledge for drawing inferences, making decisions, or answering
questions. The goals of KR are similar to those of semantic data models, but there
are some important similarities and differences between the two disciplines:

® Both disciplines use an abstraction process to identify common properties
and important aspects of objects in the miniworld (also known as domain of
discourse in KR) while suppressing insignificant differences and unimpor-
tant details.

® Both disciplines provide concepts, relationships, constraints, operations, and
languages for defining data and representing knowledge.

® KR is generally broader in scope than semantic data models. Different forms
of knowledge, such as rules (used in inference, deduction, and search),
incomplete and default knowledge, and temporal and spatial knowledge, are
represented in KR schemes. Database models are being expanded to include
some of these concepts (see Chapter 26).

B KR schemes include reasoning mechanisms that deduce additional facts
from the facts stored in a database. Hence, whereas most current database
systems are limited to answering direct queries, knowledge-based systems
using KR schemes can answer queries that involve inferences over the stored
data. Database technology is being extended with inference mechanisms (see
Section 26.5).

B Whereas most data models concentrate on the representation of database
schemas, or meta-knowledge, KR schemes often mix up the schemas with
the instances themselves in order to provide flexibility in representing excep-
tions. This often results in inefficiencies when these KR schemes are imple-
mented, especially when compared with databases and when a large amount
of data (facts) needs to be stored.

12An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and excep-
tions.
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We now discuss four abstraction concepts that are used in semantic data models,
such as the EER model as well as in KR schemes: (1) classification and instantiation,
(2) identification, (3) specialization and generalization, and (4) aggregation and
association. The paired concepts of classification and instantiation are inverses of
one another, as are generalization and specialization. The concepts of aggregation
and association are also related. We discuss these abstract concepts and their rela-
tion to the concrete representations used in the EER model to clarify the data
abstraction process and to improve our understanding of the related process of con-
ceptual schema design. We close the section with a brief discussion of ontology,
which is being used widely in recent knowledge representation research.

8.7.1 Classification and Instantiation

The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in
KR) the classes rather than the individual objects. Collections of objects that share
the same types of attributes, relationships, and constraints are classified into classes
in order to simplify the process of discovering their properties. Instantiation is the
inverse of classification and refers to the generation and specific examination of dis-
tinct objects of a class. An object instance is related to its object class by the IS-AN-
INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER diagrams do
not display instances, the UML diagrams allow a form of instantiation by permit-
ting the display of individual objects. We did not describe this feature in our intro-
duction to UML class diagrams.

In general, the objects of a class should have a similar type structure. However, some
objects may display properties that differ in some respects from the other objects of
the class; these exception objects also need to be modeled, and KR schemes allow
more varied exceptions than do database models. In addition, certain properties
apply to the class as a whole and not to the individual objects; KR schemes allow
such class properties. UML diagrams also allow specification of class properties.

In the EER model, entities are classified into entity types according to their basic
attributes and relationships. Entities are further classified into subclasses and cate-
gories based on additional similarities and differences (exceptions) among them.
Relationship instances are classified into relationship types. Hence, entity types,
subclasses, categories, and relationship types are the different concepts that are used
for classification in the EER model. The EER model does not provide explicitly for
class properties, but it may be extended to do so. In UML, objects are classified into
classes, and it is possible to display both class properties and individual objects.

Knowledge representation models allow multiple classification schemes in which
one class is an instance of another class (called a meta-class). Notice that this cannot
be represented directly in the EER model, because we have only two levels—classes
and instances. The only relationship among classes in the EER model is a super-
class/subclass relationship, whereas in some KR schemes an additional
class/instance relationship can be represented directly in a class hierarchy. An
instance may itself be another class, allowing multiple-level classification schemes.
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8.7.2 ldentification

Identification is the abstraction process whereby classes and objects are made
uniquely identifiable by means of some identifier. For example, a class name
uniquely identifies a whole class within a schema. An additional mechanism is nec-
essary for telling distinct object instances apart by means of object identifiers.
Moreover, it is necessary to identify multiple manifestations in the database of the
same real-world object. For example, we may have a tuple <‘Matthew Clarke’,
‘610618, °376-9821°> in a PERSON relation and another tuple <‘301-54-0836, ‘CS),
3.8> in a STUDENT relation that happen to represent the same real-world entity.
There is no way to identify the fact that these two database objects (tuples) represent
the same real-world entity unless we make a provision at design time for appropriate
cross-referencing to supply this identification. Hence, identification is needed at
two levels:

® To distinguish among database objects and classes

® To identify database objects and to relate them to their real-world counter-
parts

In the EER model, identification of schema constructs is based on a system of
unique names for the constructs in a schema. For example, every class in an EER
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be
distinct. Rules for unambiguously identifying attribute name references in a special-
ization or generalization lattice or hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among entities
of a particular entity type. For weak entity types, entities are identified by a combi-
nation of their own partial key values and the entities they are related to in the
owner entity type(s). Relationship instances are identified by some combination of
the entities that they relate to, depending on the cardinality ratio specified.

8.7.3 Specialization and Generalization

Specialization is the process of classifying a class of objects into more specialized
subclasses. Generalization is the inverse process of generalizing several classes into
a higher-level abstract class that includes the objects in all these classes.
Specialization is conceptual refinement, whereas generalization is conceptual syn-
thesis. Subclasses are used in the EER model to represent specialization and general-
ization. We call the relationship between a subclass and its superclass an
IS-A-SUBCLASS-OF relationship, or simply an IS-A relationship. This is the same
as the IS-A relationship discussed earlier in Section 8.5.3.

8.7.4 Aggregation and Association

Aggregation is an abstraction concept for building composite objects from their
component objects. There are three cases where this concept can be related to the
EER model. The first case is the situation in which we aggregate attribute values of
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an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER
model does not provide for explicitly, involves the possibility of combining objects
that are related by a particular relationship instance into a higher-level aggregate
object. This is sometimes useful when the higher-level aggregate object is itself to be
related to another object. We call the relationship between the primitive objects and
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-
OF. UML provides for all three types of aggregation.

The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This
abstract relationship is called IS-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER
schema shown in Figure 8.11(a), which stores information about interviews by job
applicants to various companies. The class COMPANY is an aggregation of the
attributes (or component objects) Cname (company name) and Caddress (company
address), whereas JOB_APPLICANT is an aggregate of Ssn, Name, Address, and Phone.
The relationship attributes Contact_name and Contact_phone represent the name
and phone number of the person in the company who is responsible for the inter-
view. Suppose that some interviews result in job offers, whereas others do not. We
would like to treat INTERVIEW as a class to associate it with JOB_OFFER. The
schema shown in Figure 8.11(b) is incorrect because it requires each interview rela-
tionship instance to have a job offer. The schema shown in Figure 8.11(c) is not
allowed because the ER model does not allow relationships among relationships.

One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to
JOB_OFFER, as shown in Figure 8.11(d). Although the EER model as described in
this book does not have this facility, some semantic data models do allow it and call
the resulting object a composite or molecular object. Other models treat entity
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 8.11(c).

To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 8.11(e), and relate it to
JOB_OFFER. Hence, we can always represent these situations correctly in the ER
model by creating additional entity types, although it may be conceptually more
desirable to allow direct representation of aggregation, as in Figure 8.11(d), or to
allow relationships among relationships, as in Figure 8.11(c).

The main structural distinction between aggregation and association is that when
an association instance is deleted, the participating objects may continue to exist.
However, if we support the notion of an aggregate object—for example, a CAR that
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate
CAR object amounts to deleting all its component objects.
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Aggregation. (a) The relation-
ship type INTERVIEW. (b)
Including JOB_OFFER in a
ternary relationship type
(incorrect). (c) Having the
RESULTS_IN relationship par-
ticipate in other relationships
(not allowed in ER). (d) Using
aggregation and a composite
(molecular) object (generally
not allowed in ER but allowed
by some modeling tools). (e)
Correct representation in ER.
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8.7.5 Ontologies and the Semantic Web

In recent years, the amount of computerized data and information available on the
Web has spiraled out of control. Many different models and formats are used. In
addition to the database models that we present in this book, much information is
stored in the form of documents, which have considerably less structure than data-
base information does. One ongoing project that is attempting to allow information
exchange among computers on the Web is called the Semantic Web, which attempts
to create knowledge representation models that are quite general in order to allow
meaningful information exchange and search among machines. The concept of
ontology is considered to be the most promising basis for achieving the goals of the
Semantic Web and is closely related to knowledge representation. In this section, we
give a brief introduction to what ontology is and how it can be used as a basis to
automate information understanding, search, and exchange.

The study of ontologies attempts to describe the structures and relationships that
are possible in reality through some common vocabulary; therefore, it can be con-
sidered as a way to describe the knowledge of a certain community about reality.
Ontology originated in the fields of philosophy and metaphysics. One commonly
used definition of ontology is a specification of a conceptualization.'®

In this definition, a conceptualization is the set of concepts that are used to repre-
sent the part of reality or knowledge that is of interest to a community of users.
Specification refers to the language and vocabulary terms that are used to specify
the conceptualization. The ontology includes both specification and
conceptualization. For example, the same conceptualization may be specified in two
different languages, giving two separate ontologies. Based on this quite general def-
inition, there is no consensus on what an ontology is exactly. Some possible ways to
describe ontologies are as follows:

® A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

B A taxonomy describes how concepts of a particular area of knowledge are
related using structures similar to those used in a specialization or general-
ization.

B A detailed database schema is considered by some to be an ontology that
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

® A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are quite similar to the concepts we
discussed in conceptual modeling, such as entities, attributes, relationships, special-
izations, and so on. The main difference between an ontology and, say, a database
schema, is that the schema is usually limited to describing a small subset of a mini-

13This definition is given in Gruber (1995).



Review Questions

world from reality in order to store and manage data. An ontology is usually consid-
ered to be more general in that it attempts to describe a part of reality or a domain
of interest (for example, medical terms, electronic-commerce applications, sports,
and so on) as completely as possible.

8.8 Summary

In this chapter we discussed extensions to the ER model that improve its representa-
tional capabilities. We called the resulting model the enhanced ER or EER model.
We presented the concept of a subclass and its superclass and the related mechanism
of attribute/relationship inheritance. We saw how it is sometimes necessary to create
additional classes of entities, either because of additional specific attributes or
because of specific relationship types. We discussed two main processes for defining
superclass/subclass hierarchies and lattices: specialization and generalization.

Next, we showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. In
addition, a defining predicate for a subclass or a defining attribute for a specializa-
tion may be specified. We discussed the differences between user-defined and
predicate-defined subclasses and between user-defined and attribute-defined spe-
cializations. Finally, we discussed the concept of a category or union type, which is a
subset of the union of two or more classes, and we gave formal definitions of all the
concepts presented.

We introduced some of the notation and terminology of UML for representing spe-
cialization and generalization. In Section 8.7 we briefly discussed the discipline of
knowledge representation and how it is related to semantic data modeling. We also
gave an overview and summary of the types of abstract data representation con-
cepts: classification and instantiation, identification, specialization and generaliza-
tion, and aggregation and association. We saw how EER and UML concepts are
related to each of these.

Review Questions
8.1. What is a subclass? When is a subclass needed in data modeling?

8.2. Define the following terms: superclass of a subclass, superclass/subclass rela-
tionship, IS-A relationship, specialization, generalization, category, specific
(local) attributes, and specific relationships.

8.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

8.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

8.5. Discuss user-defined and attribute-defined specializations, and identify the
differences between the two.
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8.6.

8.7.

8.8.

8.9.

8.12.

8.13.

8.14.

8.15.

Discuss the two main types of constraints on specializations and generaliza-
tions.

What is the difference between a specialization hierarchy and a specialization
lattice?

What is the difference between specialization and generalization? Why do we
not display this difference in schema diagrams?

How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

. For each of the following UML terms (see Sections 7.8 and 8.6), discuss the

corresponding term in the EER model, if any: object, class, association,
aggregation, generalization, multiplicity, attributes, discriminator, link, link
attribute, reflexive association, and qualified association.

. Discuss the main differences between the notation for EER schema diagrams

and UML class diagrams by comparing how common concepts are repre-
sented in each.

List the various data abstraction concepts and the corresponding modeling
concepts in the EER model.

What aggregation feature is missing from the EER model? How can the EER
model be further enhanced to support it?

What are the main similarities and differences between conceptual database
modeling techniques and knowledge representation techniques?

Discuss the similarities and differences between an ontology and a database
schema.

Exercises

8.16.

8.17.

Design an EER schema for a database application that you are interested in.
Specify all constraints that should hold on the database. Make sure that the
schema has at least five entity types, four relationship types, a weak entity
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

Consider the BANK ER schema in Figure 7.21, and suppose that it is neces-
sary to keep track of different types of ACCOUNTS (SAVINGS_ACCTS,
CHECKING_ACCTS, ...) and LOANS (CAR_LOANS, HOME_LOANS, ...).
Suppose that it is also desirable to keep track of each ACCOUNT’s
TRANSACTIONS (deposits, withdrawals, checks, ...) and each LOAN’s
PAYMENTS; both of these include the amount, date, and time. Modify the
BANK schema, using ER and EER concepts of specialization and generaliza-
tion. State any assumptions you make about the additional requirements.
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8.19.

The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram
that shows the entity types, attributes, relationships, and specializations for
this application. State any assumptions you make. The Olympic facilities are
divided into sports complexes. Sports complexes are divided into one-sport
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so
on). A complex has a location, chief organizing individual, total occupied
area, and so on. Each complex holds a series of events (e.g., the track stadium
may hold many different races). For each event there is a planned date, dura-
tion, number of participants, number of officials, and so on. A roster of all
officials will be maintained together with the list of events each official will
be involved in. Different equipment is needed for the events (e.g., goal posts,
poles, parallel bars) as well as for maintenance. The two types of facilities
(one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

Identify all the important concepts represented in the library database case
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and
specialization/generalization. Specify (min, max) cardinality constraints
whenever possible. List details that will affect the eventual design but that
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per
book). About 10 percent of the volumes are out on loan at any one time. The
librarians ensure that the books that members want to borrow are available
when the members want to borrow them. Also, the librarians must know how
many copies of each book are in the library or out on loan at any given time.
A catalog of books is available online that lists books by author, title, and sub-
ject area. For each title in the library, a book description is kept in the catalog
that ranges from one sentence to several pages. The reference librarians want
to be able to access this description when members request information
about a book. Library staff includes chief librarian, departmental associate
librarians, reference librarians, check-out staff, and library assistants.

Books can be checked out for 21 days. Members are allowed to have only five
books out at a time. Members usually return books within three to four
weeks. Most members know that they have one week of grace before a notice
is sent to them, so they try to return books before the grace period ends.
About 5 percent of the members have to be sent reminders to return books.
Most overdue books are returned within a month of the due date.
Approximately 5 percent of the overdue books are either kept or never
returned. The most active members of the library are defined as those who
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8.20.

borrow books at least ten times during the year. The top 1 percent of mem-
bership does 15 percent of the borrowing, and the top 10 percent of the
membership does 40 percent of the borrowing. About 20 percent of the
members are totally inactive in that they are members who never borrow.

To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librari-
ans issue a numbered, machine-readable card with the member’s photo on
it. This card is good for four years. A month before a card expires, a notice is
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her
information is pulled from the employee records and a library card is mailed
to his or her campus address. Professors are allowed to check out books for
three-month intervals and have a two-week grace period. Renewal notices to
professors are sent to their campus address.

The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent
and those that cannot be lent. In addition, the librarians have a list of some
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been
replaced. The librarians must have a system that keeps track of books that
cannot be lent as well as books that they are interested in acquiring. Some
books may have the same title; therefore, the title cannot be used as a means
of identification. Every book is identified by its International Standard Book
Number (ISBN), a unique international code assigned to all books. Two
books with the same title can have different ISBNs if they are in different lan-
guages or have different bindings (hardcover or softcover). Editions of the
same book have different ISBNs.

The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

Design a database to keep track of information for an art museum. Assume
that the following requirements were collected:

® The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a
unique Id_no, an Artist (if known), a Year (when it was created, if known),
a Title, and a Description. The art objects are categorized in several ways, as
discussed below.

B ART_OBIJECTS are categorized based on their type. There are three main
types: PAINTING, SCULPTURE, and STATUE, plus another type called
OTHER to accommodate objects that do not fall into one of the three
main types.

B A PAINTING has a Paint_type (oil, watercolor, etc.), material on which it is
Drawn_on (paper, canvas, wood, etc.), and Style (modern, abstract, etc.).

® A SCULPTURE or a statue has a Material from which it was created (wood,
stone, etc.), Height, Weight, and Style.
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B An art object in the OTHER category has a Type (print, photo, etc.) and
Style.

B ART_OBIJECTs are categorized as either PERMANENT_COLLECTION
(objects that are owned by the museum) and BORROWED. Information
captured about objects in the PERMANENT_COLLECTION includes
Date_acquired, Status (on display, on loan, or stored), and Cost.
Information captured about BORROWED objects includes the Collection
from which it was borrowed, Date_borrowed, and Date_returned.

B Information describing the country or culture of Origin (Italian, Egyptian,
American, Indian, and so forth) and Epoch (Renaissance, Modern,
Ancient, and so forth) is captured for each ART_OBJECT.

® The museum keeps track of ARTIST information, if known: Name,
DateBorn (if known), Date_died (if not living), Country_of origin, Epoch,
Main_style, and Description. The Name is assumed to be unique.

® Different EXHIBITIONS occur, each having a Name, Start_date, and
End_date. EXHIBITIONS are related to all the art objects that were on dis-
play during the exhibition.

B Information is kept on other COLLECTIONS with which the museum
interacts, including Name (unique), Type (museum, personal, etc.),
Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions
you make, and that justify your EER design choices.

Figure 8.12 shows an example of an EER diagram for a small private airport
database that is used to keep track of airplanes, their owners, airport
employees, and pilots. From the requirements for this database, the follow-
ing information was collected: Each AIRPLANE has a registration number
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Model], a
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number
[Number], a capacity [Capacity], and a location [Location]. The database also
keeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs who
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate].
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service
record [SERVICE]. Each plane undergoes service many times; hence, it is
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE
record includes as attributes the date of maintenance [Date], the number of
hours spent on the work [Hours], and the type of work done [Work_code].
We use a weak entity type [SERVICE] to represent airplane service, because
the airplane registration number is used to identify a service record. An
OWNER is either a person or a corporation. Hence, we use a union type (cat-
egory) [OWNER] that is a subset of the union of corporation
[CORPORATION] and person [PERSON] entity types. Both pilots [PILOT]
and employees [EMPLOYEE] are subclasses of PERSON. Each PILOT has
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EER schema for a SMALL_AIRPORT database.

specific attributes license number [Lic_num] and restrictions [Restr]; each
EMPLOYEE has specific attributes salary [Salary] and shift worked [Shift]. All
PERSON entities in the database have data kept on their Social Security
number [Ssn], name [Name], address [Address], and telephone number
[Phone]. For CORPORATION entities, the data kept includes name [Name],
address [Address], and telephone number [Phone]. The database also keeps
track of the types of planes each pilot is authorized to fly [FLIES] and the
types of planes each employee can do maintenance work on [WORKS_ON].
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Show how the SMALL_AIRPORT EER schema in Figure 8.12 may be repre-
sented in UML notation. (Note: We have not discussed how to represent cat-
egories (union types) in UML, so you do not have to map the categories in
this and the following question.)
8.22. Show how the UNIVERSITY EER schema in Figure 8.9 may be represented in
UML notation.
8.23. Consider the entity sets and attributes shown in the table below. Place a
checkmark in one column in each row to indicate the relationship between
the far left and right columns.
a. The left side has a relationship with the right side.
b. The right side is an attribute of the left side.
c. The left side is a specialization of the right side.
d. The left side is a generalization of the right side.
(a) Has a (b) Has an (©Isa dIsa
Relationship Attribute Specialization  Generalization Entity Set
Entity Set with that is of of or Attribute
1. MOTHER PERSON
2. DAUGHTER MOTHER
3. STUDENT PERSON
4. STUDENT Student_id
5. SCHOOL STUDENT
6. SCHOOL CLASS_ROOM
7. ANIMAL HORSE
8. HORSE Breed
9. HORSE Age
10. EMPLOYEE SSN
11. FURNITURE CHAIR
12. CHAIR Weight
13. HUMAN WOMAN
14. SOLDIER PERSON
15. ENEMY_COMBATANT PERSON

8.24. Draw a UML diagram for storing a played game of chess in a database. You
may look at http://www.chessgames.com for an application similar to what
you are designing. State clearly any assumptions you make in your UML dia-
gram. A sample of assumptions you can make about the scope is as follows:

1. The game of chess is played between two players.

2. The game is played on an 8 X 8 board like the one shown below:
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8.25.

8.26.

3. The players are assigned a color of black or white at the start of the game.

4. Each player starts with the following pieces (traditionally called chess-
men):

a. king d. 2 bishops
b. queen e. 2 knights
c. 2 rooks f. 8 pawns

5. Every piece has its own initial position.

6. Every piece has its own set of legal moves based on the state of the game.
You do not need to worry about which moves are or are not legal except
for the following issues:

a. A piece may move to an empty square or capture an opposing piece.

b. If a piece is captured, it is removed from the board.

c. If a pawn moves to the last row, it is “promoted” by converting it to
another piece (queen, rook, bishop, or knight).

Note: Some of these functions may be spread over multiple classes.

Draw an EER diagram for a game of chess as described in Exercise 8.24.
Focus on persistent storage aspects of the system. For example, the system
would need to retrieve all the moves of every game played in sequential
order.

Which of the following EER diagrams is/are incorrect and why? State clearly
any assumptions you make.
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8.27. Consider the following EER diagram that describes the computer systems at
a company. Provide your own attributes and key for each entity type. Supply
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.

INSTALLED

SOFTWARE

SOLD_WITH

OPERATING_
SYSTEM

SUPPORTS

ACCESSORY

i MEMORY

VIDEO_CARD

SOUND_CARD

KEYBOARD
MONITOR

Laboratory Exercises

8.28. Consider a GRADE_BOOK database in which instructors within an academic department record
points earned by individual students in their classes. The data requirements are summarized as
follows:

® Each student is identified by a unique identifier, first and last name, and an e-mail address.

® Each instructor teaches certain courses each term. Each course is identified by a course num-
ber, a section number, and the term in which it is taught. For each course he or she teaches, the
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instructor specifies the minimum number of points required in order to
earn letter grades A, B, C, D, and F. For example, 90 points for an A, 80
points for a B, 70 points for a C, and so forth.

Students are enrolled in each course taught by the instructor.

Each course has a number of grading components (such as midterm
exam, final exam, project, and so forth). Each grading component has a
maximum number of points (such as 100 or 50) and a weight (such as
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

Finally, the instructor records the points earned by each student in each of
the grading components in each of the courses. For example, student
1234 earns 84 points for the midterm exam grading component of the
section 2 course CSc2310 in the fall term of 2009. The midterm exam
grading component may have been defined to have a maximum of 100
points and a weight of 20% of the course grade.

Design an Enhanced Entity-Relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

Consider an ONLINE_AUCTION database system in which members (buyers
and sellers) participate in the sale of items. The data requirements for this
system are summarized as follows:

The online site has members, each of whom is identified by a unique
member number and is described by an e-mail address, name, password,
home address, and phone number.

A member may be a buyer or a seller. A buyer has a shipping address
recorded in the database. A seller has a bank account number and routing
number recorded in the database.

Items are placed by a seller for sale and are identified by a unique item
number assigned by the system. Items are also described by an item title, a
description, starting bid price, bidding increment, the start date of the
auction, and the end date of the auction.

Items are also categorized based on a fixed classification hierarchy (for
example, a modem may be classified as COMPUTER—HARDWARE
—MODEM).

Buyers make bids for items they are interested in. Bid price and time of
bid is recorded. The bidder at the end of the auction with the highest bid
price is declared the winner and a transaction between buyer and seller
may then proceed.

The buyer and seller may record feedback regarding their completed
transactions. Feedback contains a rating of the other party participating
in the transaction (1-10) and a comment.
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Design an Enhanced Entity-Relationship diagram for the ONLINE_AUCTION
database and build the design using a data modeling tool such as ERwin or
Rational Rose.

Consider a database system for a baseball organization such as the major
leagues. The data requirements are summarized as follows:

® The personnel involved in the league include players, coaches, managers,
and umpires. Each is identified by a unique personnel id. They are also
described by their first and last names along with the date and place of
birth.

® Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

® Within the players group is a subset of players called pitchers. Pitchers
have a lifetime ERA (earned run average) associated with them.

B Teams are uniquely identified by their names. Teams are also described by
the city in which they are located and the division and league in which
they play (such as Central division of the American League).

® Teams have one manager, a number of coaches, and a number of players.

B Games are played between two teams with one designated as the home
team and the other the visiting team on a particular date. The score (runs,
hits, and errors) are recorded for each team. The team with the most runs
is declared the winner of the game.

® With each finished game, a winning pitcher and a losing pitcher are
recorded. In case there is a save awarded, the save pitcher is also recorded.

® With each finished game, the number of hits (singles, doubles, triples, and
home runs) obtained by each player is also recorded.

Design an Enhanced Entity-Relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or
Rational Rose.

Consider the EER diagram for the UNIVERSITY database shown in Figure
8.9. Enter this design using a data modeling tool such as ERwin or Rational
Rose. Make a list of the differences in notation between the diagram in the
text and the corresponding equivalent diagrammatic notation you end up
using with the tool.

Consider the EER diagram for the small AIRPORT database shown in Figure
8.12. Build this design using a data modeling tool such as ERwin or Rational
Rose. Be careful as to how you model the category OWNER in this diagram.
(Hint: Consider using CORPORATION_IS_OWNER and PERSON_IS_
OWNER as two distinct relationship types.)

Consider the UNIVERSITY database described in Exercise 7.16. You already
developed an ER schema for this database using a data modeling tool such as
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ERwin or Rational Rose in Lab Exercise 7.31. Modify this diagram by classi-
fying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES
and INSTRUCTORS as  either = JUNIOR_PROFESSORS  or
SENIOR_PROFESSORS. Include appropriate attributes for these new entity
types. Then establish relationships indicating that junior instructors teach
undergraduate courses while senior instructors teach graduate courses.
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chapter 9

Relational Database
Design by ER- and
EER-to-Relational Mapping

This chapter discusses how to design a relational
database schema based on a conceptual schema
design. Figure 7.1 presented a high-level view of the database design process, and in
this chapter we focus on the logical database design or data model mapping step of
database design. We present the procedures to create a relational schema from an
Entity-Relationship (ER) or an Enhanced ER (EER) schema. Our discussion relates
the constructs of the ER and EER models, presented in Chapters 7 and 8, to the con-
structs of the relational model, presented in Chapters 3 through 6. Many computer-
aided software engineering (CASE) tools are based on the ER or EER models, or
other similar models, as we have discussed in Chapters 7 and 8. Many tools use ER
or EER diagrams or variations to develop the schema graphically, and then convert
it automatically into a relational database schema in the DDL of a specific relational
DBMS by employing algorithms similar to the ones presented in this chapter.

We outline a seven-step algorithm in Section 9.1 to convert the basic ER model con-
structs—entity types (strong and weak), binary relationships (with various struc-
tural constraints), n-ary relationships, and attributes (simple, composite, and
multivalued)—into relations. Then, in Section 9.2, we continue the mapping algo-
rithm by describing how to map EER model constructs—specialization/generaliza-
tion and union types (categories)—into relations. Section 9.3 summarizes the
chapter.
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9.1 Relational Database Design Using
ER-to-Relational Mapping

9.1.1 ER-to-Relational Mapping Algorithm

In this section we describe the steps of an algorithm for ER-to-relational mapping.
We use the COMPANY database example to illustrate the mapping procedure. The
COMPANY ER schema is shown again in Figure 9.1, and the corresponding
COMPANY relational database schema is shown in Figure 9.2 to illustrate the map-

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

Supervisor
1

| DEPENDENT |

Ctame Ce > Bt cate >

Relationship
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EMPLOYEE

| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno |

Am*

DEPARTMENT

| Dname | Dnumber | Mgr_ssn| Mgr_start_date|
A“

DEPT_LOCATIONS

| Dnumber | Dlocation |
1

287

PROJECT
| Pname | Pnumber | Plocation | Dnum
A L |
WORKS_ON
| Essn | Pno | Hours |
Figure 9.2
Result of mapping the
DEPENDENT COMPANY ER schema
| Essn | Dependent_name | Sex | Bdate | Relationship into a relational database

' schema.

ping steps. We assume that the mapping will create tables with simple single-valued
attributes. The relational model constraints defined in Chapter 3, which include
primary keys, unique keys (if any), and referential integrity constraints on the rela-
tions, will also be specified in the mapping results.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type
E in the ER schema, create a relation R that includes all the simple attributes of E.
Include only the simple component attributes of a composite attribute. Choose one
of the key attributes of E as the primary key for R. If the chosen key of E is a com-
posite, then the set of simple attributes that form it will together form the primary
key of R.

If multiple keys were identified for E during the conceptual design, the information
describing the attributes that form each additional key is kept in order to specify
secondary (unique) keys of relation R. Knowledge about keys is also kept for index-
ing purposes and other types of analyses.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in
Figure 9.2 to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and
PROJECT in Figure 9.1. The foreign key and relationship attributes, if any, are
not included yet; they will be added during subsequent steps. These include the
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attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and Mgr_start_date of
DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn, Dnumber,
and Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and
PROJECT, respectively. Knowledge that Dname of DEPARTMENT and Pname of
PROJECT are secondary keys is kept for possible use later in the design.

The relations that are created from the mapping of entity types are sometimes called
entity relations because each tuple represents an entity instance. The result after
this mapping step is shown in Figure 9.3(a).

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the ER
schema with owner entity type E, create a relation R and include all simple attrib-
utes (or simple components of composite attributes) of W as attributes of R. In
addition, include as foreign key attributes of R, the primary key attribute(s) of the
relation(s) that correspond to the owner entity type(s); this takes care of mapping
the identifying relationship type of W. The primary key of R is the combination of
the primary key(s) of the owner(s) and the partial key of the weak entity type W, if
any.

If there is a weak entity type E, whose owner is also a weak entity type E,, then E,
should be mapped before E, to determine its primary key first.

In our example, we create the relation DEPENDENT in this step to correspond to the
weak entity type DEPENDENT (see Figure 9.3(b)). We include the primary key Ssn
of the EMPLOYEE relation—which corresponds to the owner entity type—as a for-
eign key attribute of DEPENDENT; we rename it Essn, although this is not necessary.

Figure 9.3
lllustration of some
mapping steps.

(a) Entity relations
after step 1.

(a) EMPLOYEE
| Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary |

DEPARTMENT

(b) Additional weak entity
relation after step 2.

(c) Relationship relation

after step b.

(d) Relation representing
multivalued attribute

after step 6. (b)

(c)

(d

| Dname | Dnumber |

PROJECT

| Pname | Pnumber | Plocation |

DEPENDENT

| Essn | Dependent_name | Sex | Bdate | Relationship

WORKS_ON

| Essn | Pno | Hours |

DEPT_LOCATIONS

| Dnumber | Dlocation |
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The primary key of the DEPENDENT relation is the combination {Essn,
Dependent_name}, because Dependent_name (also renamed from Name in Figure 9.1)
is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential trig-
gered action (see Section 4.2) on the foreign key in the relation corresponding to the
weak entity type, since a weak entity has an existence dependency on its owner
entity. This can be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela-
tionship type R in the ER schema, identify the relations S and T that correspond to
the entity types participating in R. There are three possible approaches: (1) the for-
eign key approach, (2) the merged relationship approach, and (3) the cross-
reference or relationship relation approach. The first approach is the most useful
and should be followed unless special conditions exist, as we discuss below.

1. Foreign key approach: Choose one of the relations—S, say—and include as
a foreign key in S the primary key of T. It is better to choose an entity type
with total participation in R in the role of S. Include all the simple attributes
(or simple components of composite attributes) of the 1:1 relationship type
R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure
9.1 by choosing the participating entity type DEPARTMENT to serve in the
role of S because its participation in the MANAGES relationship type is total
(every department has a manager). We include the primary key of the
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename
it Mgr_ssn. We also include the simple attribute Start_date of the MANAGES
relationship type in the DEPARTMENT relation and rename it Mgr_start_date
(see Figure 9.2).

Note that it is possible to include the primary key of S as a foreign key in T
instead. In our example, this amounts to having a foreign key attribute, say
Department_managed in the EMPLOYEE relation, but it will have a NULL value
for employee tuples who do not manage a department. If only 2 percent of
employees manage a department, then 98 percent of the foreign keys would
be NULL in this case. Another possibility is to have foreign keys in both rela-
tions S and T redundantly, but this creates redundancy and incurs a penalty
for consistency maintenance.

2. Merged relation approach: An alternative mapping of a 1:1 relationship
type is to merge the two entity types and the relationship into a single rela-
tion. This is possible when both participations are total, as this would indicate
that the two tables will have the exact same number of tuples at all times.

3. Cross-reference or relationship relation approach: The third option is to
set up a third relation R for the purpose of cross-referencing the primary
keys of the two relations S and T representing the entity types. As we will see,
this approach is required for binary M:N relationships. The relation R is
called a relationship relation (or sometimes a lookup table), because each
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tuple in R represents a relationship instance that relates one tuple from S
with one tuple from T. The relation R will include the primary key attributes
of Sand T as foreign keys to S and T. The primary key of R will be one of the
two foreign keys, and the other foreign key will be a unique key of R. The
drawback is having an extra relation, and requiring an extra join operation
when combining related tuples from the tables.

Step 4: Mapping of Binary 1:N Relationship Types. For each regular binary
1:N relationship type R, identify the relation S that represents the participating entity
type at the N-side of the relationship type. Include as foreign key in S the primary key
of the relation T that represents the other entity type participating in R; we do this
because each entity instance on the N-side is related to at most one entity instance on
the 1-side of the relationship type. Include any simple attributes (or simple compo-
nents of composite attributes) of the 1:N relationship type as attributes of S.

In our example, we now map the 1:N relationship types WORKS_FOR, CONTROLS,
and SUPERVISION from Figure 9.1. For WORKS_FOR we include the primary key
Dnumber of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and
call it Dno. For SUPERVISION we include the primary key of the EMPLOYEE relation
as foreign key in the EMPLOYEE relation itself—because the relationship is recur-
sive—and call it Super_ssn. The CONTROLS relationship is mapped to the foreign
key attribute Dnum of PROJECT, which references the primary key Dnumber of the
DEPARTMENT relation. These foreign keys are shown in Figure 9.2.

An alternative approach is to use the relationship relation (cross-reference) option
as in the third option for binary 1:1 relationships. We create a separate relation R
whose attributes are the primary keys of S and T, which will also be foreign keys to
Sand T. The primary key of R is the same as the primary key of S. This option can
be used if few tuples in S participate in the relationship to avoid excessive NULL val-
ues in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types. For each binary M:N
relationship type R, create a new relation S to represent R. Include as foreign key
attributes in S the primary keys of the relations that represent the participating
entity types; their combination will form the primary key of S. Also include any sim-
ple attributes of the M:N relationship type (or simple components of composite
attributes) as attributes of S. Notice that we cannot represent an M:N relationship
type by a single foreign key attribute in one of the participating relations (as we did
for 1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must cre-
ate a separate relationship relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure 9.1 by
creating the relation WORKS_ON in Figure 9.2. We include the primary keys of the
PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename
them Pno and Essn, respectively. We also include an attribute Hours in WORKS_ON
to represent the Hours attribute of the relationship type. The primary key of the
WORKS_ON relation is the combination of the foreign key attributes {Essn, Pno}.
This relationship relation is shown in Figure 9.3(c).
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The propagate (CASCADE) option for the referential triggered action (see Section
4.2) should be specified on the foreign keys in the relation corresponding to the
relationship R, since each relationship instance has an existence dependency on
each of the entities it relates. This can be used for both ON UPDATE and ON DELETE.

Notice that we can always map 1:1 or 1:N relationships in a manner similar to M:N
relationships by using the cross-reference (relationship relation) approach, as we
discussed earlier. This alternative is particularly useful when few relationship
instances exist, in order to avoid NULL values in foreign keys. In this case, the pri-
mary key of the relationship relation will be only one of the foreign keys that refer-
ence the participating entity relations. For a 1:N relationship, the primary key of the
relationship relation will be the foreign key that references the entity relation on the
N-side. For a 1:1 relationship, either foreign key can be used as the primary key of
the relationship relation.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A,
create a new relation R. This relation R will include an attribute corresponding to A,
plus the primary key attribute K—as a foreign key in R—of the relation that repre-
sents the entity type or relationship type that has A as a multivalued attribute. The
primary key of R is the combination of A and K. If the multivalued attribute is com-
posite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)). The
attribute Dlocation represents the multivalued attribute LOCATIONS of
DEPARTMENT, while Dnumber—as foreign key—represents the primary key of the
DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of
{Dnumber, Dlocation}. A separate tuple will exist in DEPT_LOCATIONS for each loca-
tion that a department has.

The propagate (CASCADE) option for the referential triggered action (see Section
4.2) should be specified on the foreign key in the relation R corresponding to the
multivalued attribute for both ON UPDATE and ON DELETE. We should also note
that the key of R when mapping a composite, multivalued attribute requires some
analysis of the meaning of the component attributes. In some cases, when a multi-
valued attribute is composite, only some of the component attributes are required
to be part of the key of R; these attributes are similar to a partial key of a weak entity
type that corresponds to the multivalued attribute (see Section 7.5).

Figure 9.2 shows the COMPANY relational database schema obtained with steps 1
through 6, and Figure 3.6 shows a sample database state. Notice that we did not yet
discuss the mapping of n-ary relationship types (n > 2) because none exist in Figure
9.1; these are mapped in a similar way to M:N relationship types by including the
following additional step in the mapping algorithm.

Step 7: Mapping of N-ary Relationship Types. For each n-ary relationship
type R, where n > 2, create a new relation S to represent R. Include as foreign key
attributes in S the primary keys of the relations that represent the participating
entity types. Also include any simple attributes of the n-ary relationship type (or

291



292 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

simple components of composite attributes) as attributes of S. The primary key of S
is usually a combination of all the foreign keys that reference the relations repre-
senting the participating entity types. However, if the cardinality constraints on any
of the entity types E participating in R is 1, then the primary key of S should not
include the foreign key attribute that references the relation E’ corresponding to E
(see the discussion in Section 7.9.2 concerning constraints on #-ary relationships).

For example, consider the relationship type SUPPLY in Figure 7.17. This can be
mapped to the relation SUPPLY shown in Figure 9.4, whose primary key is the com-
bination of the three foreign keys {Sname, Part_no, Proj_name}.

9.1.2 Discussion and Summary of Mapping
for ER Model Constructs

Table 9.1 summarizes the correspondences between ER and relational model con-
structs and constraints.

One of the main points to note in a relational schema, in contrast to an ER schema,
is that relationship types are not represented explicitly; instead, they are represented
by having two attributes A and B, one a primary key and the other a foreign key
(over the same domain) included in two relations S and T. Two tuples in S and T are
related when they have the same value for A and B. By using the EQUIJOIN opera-
tion (or NATURAL JOIN if the two join attributes have the same name) over S.A and
T.B, we can combine all pairs of related tuples from S and T and materialize the
relationship. When a binary 1:1 or 1:N relationship type is involved, a single join
operation is usually needed. For a binary M:N relationship type, two join operations
are needed, whereas for n-ary relationship types, # joins are needed to fully materi-
alize the relationship instances.

Figure 9.4

Mapping the n-ary
relationship type
SUPPLY from Figure
7.17(a).

SUPPLIER

[Same [ |

PROJECT

| Proj_name| |
)

PART
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1

SUPPLY

_| Sname | Proj_name| Part_no | Quantity
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Table 9.1 Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or relationship relation)
M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and » foreign keys
Simple attribute Attribute

Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

For example, to form a relation that includes the employee name, project name, and
hours that the employee works on each project, we need to connect each EMPLOYEE
tuple to the related PROJECT tuples via the WORKS_ON relation in Figure 9.2.
Hence, we must apply the EQUIJOIN operation to the EMPLOYEE and WORKS_ON
relations with the join condition Ssn = Essn, and then apply another EQUIJOIN
operation to the resulting relation and the PROJECT relation with join condition
Pno = Pnumber. In general, when multiple relationships need to be traversed,
numerous join operations must be specified. A relational database user must always
be aware of the foreign key attributes in order to use them correctly in combining
related tuples from two or more relations. This is sometimes considered to be a
drawback of the relational data model, because the foreign key/primary key corre-
spondences are not always obvious upon inspection of relational schemas. If an
EQUIJOIN is performed among attributes of two relations that do not represent a
foreign key/primary key relationship, the result can often be meaningless and may
lead to spurious data. For example, the reader can try joining the PROJECT and
DEPT_LOCATIONS relations on the condition Dlocation = Plocation and examine the
result (see the discussion of spurious tuples in Section 15.1.4).

In the relational schema we create a separate relation for each multivalued attribute.
For a particular entity with a set of values for the multivalued attribute, the key
attribute value of the entity is repeated once for each value of the multivalued
attribute in a separate tuple because the basic relational model does not allow mul-
tiple values (a list, or a set of values) for an attribute in a single tuple. For example,
because department 5 has three locations, three tuples exist in the
DEPT_LOCATIONS relation in Figure 3.6; each tuple specifies one of the locations. In
our example, we apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the
Dnumber attribute to get the values of all locations along with other DEPARTMENT
attributes. In the resulting relation, the values of the other DEPARTMENT attributes
are repeated in separate tuples for every location that a department has.
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The basic relational algebra does not have a NEST or COMPRESS operation that
would produce a set of tuples of the form {<‘l’, ‘Houston’>, <‘4), ‘Stafford’>, <‘5,,
{‘Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure
3.6. This is a serious drawback of the basic normalized or flat version of the rela-
tional model. The object data model and object-relational systems (see Chapter 11)
do allow multivalued attributes.

9.2 Mapping EER Model Constructs
to Relations

Next, we discuss the mapping of EER model constructs to relations by extending the
ER-to-relational mapping algorithm that was presented in Section 9.1.1.

9.2.1 Mapping of Specialization or Generalization

There are several options for mapping a number of subclasses that together form a
specialization (or alternatively, that are generalized into a superclass), such as the
{SECRETARY, TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 8.4. We
can add a further step to our ER-to-relational mapping algorithm from Section
9.1.1, which has seven steps, to handle the mapping of specialization. Step 8, which
follows, gives the most common options; other mappings are also possible. We dis-
cuss the conditions under which each option should be used. We use Attrs(R) to
denote the attributes of relation R, and PK(R) to denote the primary key of R. First we
describe the mapping formally, then we illustrate it with examples.

Step 8: Options for Mapping Specialization or Generalization. Convert each
specialization with m subclasses {S,, S,, ..., S,,} and (generalized) superclass C,
where the attributes of C are {k, a,, ...a,} and k is the (primary) key, into relation
schemas using one of the following options:

E QOption 8A: Multiple relations—superclass and subclasses. Create a rela-
tion L for C with attributes Attrs(L) = {k, a, ..., a,} and PK(L) = k. Create a
relation L, for each subclass S;, 1 <i < m, with the attributes Attrs(L;) = {k} U
{attributes of S;} and PK(L,) = k. This option works for any specialization
(total or partial, disjoint or overlapping).

® Option 8B: Multiple relations—subclass relations only. Create a relation
L, for each subclass S;, 1 < i < m, with the attributes Attrs(L;) = {attributes of
S}t Uik, ay,....,a,} and PK(L;) = k. This option only works for a specialization
whose subclasses are fotal (every entity in the superclass must belong to (at
least) one of the subclasses). Additionally, it is only recommended if the spe-
cialization has the disjointedness constraint (see Section 8.3.1).If the special-

ization is overlapping, the same entity may be duplicated in several relations.
® Option 8C: Single relation with one type attribute. Create a single relation

L with attributes Attrs(L) = {k, a,, ..., a,} U {attributes of S} U ... U {attrib-

utes of S, } U {t} and PK(L) = k. The attribute ¢ is called a type (or
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discriminating) attribute whose value indicates the subclass to which each
tuple belongs, if any. This option works only for a specialization whose sub-
classes are disjoint, and has the potential for generating many NULL values if
many specific attributes exist in the subclasses.

® Option 8D: Single relation with multiple type attributes. Create a single
relation schema L with attributes Attrs(L) = {k, a,, ..., a,,} U {attributes of S, }
U ... U {attributes of S, } U{t, t,, ..., t,,} and PK(L) = k. Each £, 1 <i<m, is
a Boolean type attribute indicating whether a tuple belongs to subclass S,.
This option is used for a specialization whose subclasses are overlapping (but
will also work for a disjoint specialization).

Options 8A and 8B can be called the multiple-relation options, whereas options
8C and 8D can be called the single-relation options. Option 8A creates a relation L
for the superclass C and its attributes, plus a relation L for each subclass S;; each L;
includes the specific (or local) attributes of S, plus the primary key of the superclass
C, which is propagated to L; and becomes its primary key. It also becomes a foreign
key to the superclass relation. An EQUIOIN operation on the primary key between
any L; and L produces all the specific and inherited attributes of the entities in S;.
This option is illustrated in Figure 9.5(a) for the EER schema in Figure 8.4. Option
8A works for any constraints on the specialization: disjoint or overlapping, total or
partial. Notice that the constraint

n<k>(Li) - n<k>(L)

must hold for each L;. This specifies a foreign key from each L, to L, as well as an
inclusion dependency L.k < L.k (see Section 16.5).
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(a) EMPLOYEE Figure 9.5

| Ssn | Fname | Minit| Lname | Birth_date | Address | Job_type | Options for mapping specialization
? [ or generalization. () Mapping the

EER schema in Figure 8.4 using

SECRETARY LTECHNICIAN LENGINEER option 8A. (b) Mapping the EER

| Ssn | Typing_speed | | Ssn |Tgrade |

| Ssn | Eng_type | schema in Figure 8.3(b) using

option 8B. (c) Mapping the EER
(b) CAR schema in Figure 8.4 using option

| Vehicle_id | License_plate_no | Price | Max_speed | No_of_passengers|

| Vehicle_id | License_plate_no | Price | No_of axles | Tonnage |

(c) EMPLOYEE

| Ssn | Fname | Minit | Lname | Birth_date | Address | Job_type | Typing_speed |Tgrade | Eng_type|

(d) PART

8C. (d) Mapping Figure 85 using
option 8D with Boolean type fields
TRUCK Mflag and Pflag.

| Part_no | Description| Mflag | Drawing_no | Manufacture_date| Batch_no | Pflag | Supplier_name | List_price
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In option 8B, the EQUIJOIN operation between each subclass and the superclass is
built into the schema and the relation L is done away with, as illustrated in Figure
9.5(b) for the EER specialization in Figure 8.3(b). This option works well only when
both the disjoint and total constraints hold. If the specialization is not total, an
entity that does not belong to any of the subclasses S; is lost. If the specialization is
not disjoint, an entity belonging to more than one subclass will have its inherited
attributes from the superclass C stored redundantly in more than one L,. With
option 8B, no relation holds all the entities in the superclass C; consequently, we
must apply an OUTER UNION (or FULL OUTER JOIN) operation (see Section 6.4) to
the L, relations to retrieve all the entities in C. The result of the outer union will be
similar to the relations under options 8C and 8D except that the type fields will be
missing. Whenever we search for an arbitrary entity in C, we must search all the m
relations L;.

Options 8C and 8D create a single relation to represent the superclass C and all its
subclasses. An entity that does not belong to some of the subclasses will have NULL
values for the specific attributes of these subclasses. These options are not recom-
mended if many specific attributes are defined for the subclasses. If few specific sub-
class attributes exist, however, these mappings are preferable to options 8A and 8B
because they do away with the need to specify EQUIJOIN and OUTER UNION opera-
tions; therefore, they can yield a more efficient implementation.

Option 8C is used to handle disjoint subclasses by including a single type (or image
or discriminating) attribute ¢ to indicate to which of the m subclasses each tuple
belongs; hence, the domain of ¢ could be {1, 2, ..., m}. If the specialization is partial,
t can have NULL values in tuples that do not belong to any subclass. If the specializa-
tion is attribute-defined, that attribute serves the purpose of t and ¢ is not needed;
this option is illustrated in Figure 9.5(c) for the EER specialization in Figure 8.4.

Option 8D is designed to handle overlapping subclasses by including m Boolean
type (or flag) fields, one for each subclass. It can also be used for disjoint subclasses.
Each type field ¢, can have a domain {yes, no}, where a value of yes indicates that the
tuple is a member of subclass S,. If we use this option for the EER specialization in
Figure 8.4, we would include three types attributes—Is_a_secretary, Is_a_engineer,
and Is_a_technician—instead of the Job_type attribute in Figure 9.5(c). Notice that it
is also possible to create a single type attribute of m bits instead of the m type fields.
Figure 9.5(d) shows the mapping of the specialization from Figure 8.5 using option
8D.

When we have a multilevel specialization (or generalization) hierarchy or lattice, we
do not have to follow the same mapping option for all the specializations. Instead,
we can use one mapping option for part of the hierarchy or lattice and other options
for other parts. Figure 9.6 shows one possible mapping into relations for the EER
lattice in Figure 8.6. Here we used option 8A for PERSON/{EMPLOYEE, ALUMNUS,
STUDENT}, option 8C for EMPLOYEE/{STAFF, FACULTY, STUDENT_ASSISTANT} by
including the type attribute Employee_type, and option 8D for
STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ ASSISTANT} by
including the type attributes Ta_flag and Ra_flag in EMPLOYEE, STUDENT/
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PERSON
|Sﬂ | Name | Birth_date| Sex | Address |

—H

EMPLOYEE
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| Ssn | Salary | Employee_type| Position| Rank| Percent_time| Ra_flag | Ta_flag | Project| Course |

ALUMNUS ALUMNUS_DEGREES
[ Ssn | [ Ssn | Year | Degree | Major |

STUDENT

—| Ssn | Major_dept | Grad_fla Undergrad_flag | Degree_program| Class | Student_assist_fla
J g 9 g g g g

Figure 9.6
Mapping the EER specialization lattice in Figure 8.8 using multiple options.

STUDENT_ASSISTANT by including the type attributes Student_assist_flag in
STUDENT, and STUDENT/{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}
by including the type attributes Grad_flag and Undergrad_flag in STUDENT. In Figure
9.6, all attributes whose names end with type or flag are type fields.

9.2.2 Mapping of Shared Subclasses (Multiple Inheritance)

A shared subclass, such as ENGINEERING_MANAGER in Figure 8.6, is a subclass of
several superclasses, indicating multiple inheritance. These classes must all have the
same key attribute; otherwise, the shared subclass would be modeled as a category
(union type) as we discussed in Section 8.4. We can apply any of the options dis-
cussed in step 8 to a shared subclass, subject to the restrictions discussed in step 8 of
the mapping algorithm. In Figure 9.6, options 8C and 8D are used for the shared
subclass STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation
(Employee_type attribute) and option 8D is used in the STUDENT relation
(Student_assist_flag attribute).

9.2.3 Mapping of Categories (Union Types)

We add another step to the mapping procedure—step 9—to handle categories. A
category (or union type) is a subclass of the union of two or more superclasses that
can have different keys because they can be of different entity types (see Section
8.4). An example is the OWNER category shown in Figure 8.8, which is a subset of
the union of three entity types PERSON, BANK, and COMPANY. The other category
in that figure, REGISTERED_VEHICLE, has two superclasses that have the same key
attribute.
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Step 9: Mapping of Union Types (Categories). For mapping a category whose
defining superclasses have different keys, it is customary to specify a new key attrib-
ute, called a surrogate key, when creating a relation to correspond to the category.
The keys of the defining classes are different, so we cannot use any one of them
exclusively to identify all entities in the category. In our example in Figure 8.8, we
create a relation OWNER to correspond to the OWNER category, as illustrated in
Figure 9.7, and include any attributes of the category in this relation. The primary
key of the OWNER relation is the surrogate key, which we called Owner_id. We also
include the surrogate key attribute Owner_id as foreign key in each relation corre-
sponding to a superclass of the category, to specify the correspondence in values
between the surrogate key and the key of each superclass. Notice that if a particular
PERSON (or BANK or COMPANY) entity is not a member of OWNER, it would have
a NULL value for its Owner_id attribute in its corresponding tuple in the PERSON (or
BANK or COMPANY) relation, and it would not have a tuple in the OWNER relation.
It is also recommended to add a type attribute (not shown in Figure 9.7) to the
OWNER relation to indicate the particular entity type to which each tuple belongs
(PERSON or BANK or COMPANY).

Figure 9.7

Mapping the EER categories
(union types) in Figure 8.8 to

relations.

PERSON

| Ssn |Driver_|icense_no| Name | Address | Owner_id

BANK

| Bname | Baddress | Owner_id|

COMPANY

| Cname | Caddress | Owner_id|

OWNER
B
™| Owner_id |-

REGISTERED_VEHICLE

| Vehicle_id |License_plate_number|

_+T+

CAR
| Vehicle_id| Cstyle | Cmake | Cmodel | Cyear |

TRUCK |
| Vehicle_id| Tmake | Tmodel | Tonnage | Tyear |

OWNS

| Owner_id | Vehicle_id| Purchase_date| Lien_or_regular‘




For a category whose superclasses have the same key, such as VEHICLE in Figure 8.8,
there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE
category, which illustrates this case, is also shown in Figure 9.7.

9.3 Summary

In Section 9.1, we showed how a conceptual schema design in the ER model can be
mapped to a relational database schema. An algorithm for ER-to-relational map-
ping was given and illustrated by examples from the COMPANY database. Table 9.1
summarized the correspondences between the ER and relational model constructs
and constraints. Next, we added additional steps to the algorithm in Section 9.2 for
mapping the constructs from the EER model into the relational model. Similar
algorithms are incorporated into graphical database design tools to create a rela-
tional schema from a conceptual schema design automatically.

Review Questions

9.1. Discuss the correspondences between the ER model constructs and the rela-
tional model constructs. Show how each ER model construct can be mapped
to the relational model and discuss any alternative mappings.

9.2. Discuss the options for mapping EER model constructs to relations.

Exercises

9.3. Try to map the relational schema in Figure 6.14 into an ER schema. This is
part of a process known as reverse engineering, where a conceptual schema is
created for an existing implemented database. State any assumptions you
make.

9.4. Figure 9.8 shows an ER schema for a database that can be used to keep track
of transport ships and their locations for maritime authorities. Map this
schema into a relational schema and specify all primary keys and foreign
keys.

9.5. Map the BANK ER schema of Exercise 7.23 (shown in Figure 7.21) into a
relational schema. Specify all primary keys and foreign keys. Repeat for the
AIRLINE schema (Figure 7.20) of Exercise 7.19 and for the other schemas for
Exercises 7.16 through 7.24.

9.6. Map the EER diagrams in Figures 8.9 and 8.12 into relational schemas.
Justify your choice of mapping options.

9.7. Is it possible to successfully map a binary M:N relationship type without
requiring a new relation? Why or why not?

Exercises
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Time_stamp

SHIP_MOVEMENT‘ _
\

SHIP_TYPE

N Start_date End _date
(1,1)
PORT_VISIT

HOME_PORT SHIP_AT ~
_PORT
1 (09 ’
N 1
@ STATE/COU NTRY

ON | SEAJOCEAN/LAKE|

Figure 9.8
An ER schema for a SHIP_TRACKING database.

9.8. Consider the EER diagram in Figure 9.9 for a car dealer.

Map the EER schema into a set of relations. For the VEHICLE to
CAR/TRUCK/SUV generalization, consider the four options presented in
Section 9.2.1 and show the relational schema design under each of those
options.

9.9. Using the attributes you provided for the EER diagram in Exercise 8.27, map
the complete schema into a set of relations. Choose an appropriate option
out of 8A thru 8D from Section 9.2.1 in doing the mapping of generaliza-
tions and defend your choice.
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Figure 9.9
EER diagram for
a car dealer
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Laboratory Exercises

9.10.

9.12.

9.13.

9.14.

Consider the ER design for the UNIVERSITY database that was modeled
using a tool like ERwin or Rational Rose in Laboratory Exercise 7.31. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

. Consider the ER design for the MAIL_ORDER database that was modeled

using a tool like ERwin or Rational Rose in Laboratory Exercise 7.32. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

Consider the ER design for the CONFERENCE_REVIEW database that was
modeled using a tool like ERwin or Rational Rose in Laboratory Exercise
7.34. Using the SQL schema generation feature of the modeling tool, gener-
ate the SQL schema for an Oracle database.

Consider the EER design for the GRADE_BOOK database that was modeled
using a tool like ERwin or Rational Rose in Laboratory Exercise 8.28. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

Consider the EER design for the ONLINE_AUCTION database that was mod-
eled using a tool like ERwin or Rational Rose in Laboratory Exercise 8.29.
Using the SQL schema generation feature of the modeling tool, generate the
SQL schema for an Oracle database.
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Practical Database Design
Methodology and Use
of UML Diagrams

n this chapter we move from the database design prin-

ciples that were presented in Chapters 7 through 9 to
examine some of the more practical aspects of database design. We have already
described material that is relevant to the design of actual databases for practical
real-world applications. This material includes Chapters 7 and 8 on database con-
ceptual modeling; Chapters 3 through 6 on the relational model, the SQL language,
and relational algebra and calculus; and Chapter 9 on mapping a high-level concep-
tual ER or EER schema into a relational schema. We will present additional relevant
materials in later chapters, including an overview of programming techniques for
relational systems (RDBMSs) in Chapters 13 and 14, and data dependency theory
and relational normalization algorithms in Chapters 15 and 16.

The overall database design activity has to undergo a systematic process called the
design methodology, whether the target database is managed by an RDBMS, an
object database management system (ODBMS, see Chapter 11), an object-relational
database management system (ORDBMS, see Chapter 11), or some other type of
database management system. Various design methodologies are provided in
the database design tools currently supplied by vendors. Popular tools include
Oracle Designer and related products in Oracle Developer Suite by Oracle, ERwin
and related products by CA, PowerBuilder and PowerDesigner by Sybase, and
ER/Studio and related products by Embarcadero Technologies, among many others.
Our goal in this chapter is to discuss not one specific methodology but rather data-
base design in a broader context, as it is undertaken in large organizations for the
design and implementation of applications catering to hundreds or thousands of
users.
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Generally, the design of small databases with perhaps up to 20 users need not be
very complicated. But for medium-sized or large databases that serve several diverse
application groups, each with dozens or hundreds of users, a systematic approach to
the overall database design activity becomes necessary. The sheer size of a populated
database does not reflect the complexity of the design; it is the database schema that
is the more important focus of database design. Any database with a schema that
includes more than 20 entity types and a similar number of relationship types
requires a careful design methodology.

Using the term large database for databases with several dozen gigabytes of data
and a schema with more than 30 or 40 distinct entity types, we can cover a wide
array of databases used in government, industry, and financial and commercial
institutions. Service sector industries, including banking, hotels, airlines, insurance,
utilities, and communications, use databases for their day-to-day operations 24
hours a day, 7 days a week—known in the industry as 24 by 7 operations.
Application systems for these databases are called transaction processing systems due
to the large transaction volumes and rates that are required. In this chapter we will
concentrate on the database design for such medium- and large-scale databases
where transaction processing dominates.

This chapter has a variety of objectives. Section 10.1 discusses the information sys-
tem life cycle within organizations with a particular emphasis on the database sys-
tem. Section 10.2 highlights the phases of a database design methodology within the
organizational context. Section 10.3 introduces some types of UML diagrams and
gives details on the notations that are particularly helpful in collecting requirements
and performing conceptual and logical design of databases. An illustrative partial
example of designing a university database is presented. Section 10.4 introduces the
popular software development tool called Rational Rose, which uses UML diagrams
as its main specification technique. Features of Rational Rose specific to database
requirements modeling and schema design are highlighted. Section 10.5 briefly dis-
cusses automated database design tools. Section 10.6 summarizes the chapter.

10.1 The Role of Information Systems
in Organizations

10.1.1 The Organizational Context
for Using Database Systems

Database systems have become a part of the information systems of many organiza-
tions. Historically, information systems were dominated by file systems in the 1960s,
but since the early 1970s organizations have gradually moved to database manage-
ment systems (DBMSs). To accommodate DBMSs, many organizations have created
the position of database administrator (DBA) and database administration depart-
ments to oversee and control database life-cycle activities. Similarly, information
technology (IT) and information resource management (IRM) departments have
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been recognized by large organizations as being key to successful business manage-
ment for the following reasons:

® Data is regarded as a corporate resource, and its management and control is
considered central to the effective working of the organization.

® More functions in organizations are computerized, increasing the need to
keep large volumes of data available in an up-to-the-minute current state.

B As the complexity of the data and applications grows, complex relationships
among the data need to be modeled and maintained.

B There is a tendency toward consolidation of information resources in many
organizations.

B Many organizations are reducing their personnel costs by letting end users
perform business transactions. This is evident with travel services, financial
services, higher education, government, and many other types of services.
This trend was realized early on by online retail goods outlets and customer-
to-business electronic commerce, such as Amazon.com and eBay. In these
organizations, a publicly accessible and updatable operational database must
be designed and made available for the customer transactions.

Many capabilities provided by database systems have made them integral compo-
nents in computer-based information systems. The following are some of the key
features that they offer:

® Integrating data across multiple applications into a single database.

® Support for developing new applications in a short time by using high-level
languages like SQL.

® Providing support for casual access for browsing and querying by managers
while supporting major production-level transaction processing for cus-
tomers.

From the early 1970s through the mid-1980s, the move was toward creating large
centralized repositories of data managed by a single centralized DBMS. Since then,
the trend has been toward utilizing distributed systems because of the following
developments:

1. Personal computers and database system-like software products such as
Excel, Visual FoxPro, Access (Microsoft), and SQL Anywhere (Sybase), and
public domain products such as MySQL and PostgreSQL, are being heavily
utilized by users who previously belonged to the category of casual and occa-
sional database users. Many administrators, secretaries, engineers, scientists,
architects, and students belong to this category. As a result, the practice of
creating personal databases is gaining popularity. It is sometimes possible to
check out a copy of part of a large database from a mainframe computer or a
database server, work on it from a personal workstation, and then restore it
on the mainframe. Similarly, users can design and create their own databases
and then merge them into a larger one.
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2. The advent of distributed and client-server DBMSs (see Chapter 25) is open-
ing up the option of distributing the database over multiple computer sys-
tems for better local control and faster local processing. At the same time,
local users can access remote data using the facilities provided by the DBMS
as a client, or through the Web. Application development tools such as
PowerBuilder and PowerDesigner (Sybase) and OracleDesigner and Oracle
Developer Suite (Oracle) are being used with built-in facilities to link appli-
cations to multiple back-end database servers.

3. Many organizations now use data dictionary systems or information
repositories, which are mini DBMSs that manage meta-data—that is, data
that describes the database structure, constraints, applications, authoriza-
tions, users, and so on. These are often used as an integral tool for informa-
tion resource management. A useful data dictionary system should store and
manage the following types of information:

a. Descriptions of the schemas of the database system.

b. Detailed information on physical database design, such as storage struc-
tures, access paths, and file and record sizes.

c. Descriptions of the types of database users, their responsibilities, and
their access rights.

d. High-level descriptions of the database transactions and applications and
of the relationships of users to transactions.

e. The relationship between database transactions and the data items refer-
enced by them. This is useful in determining which transactions are
affected when certain data definitions are changed.

f. Usage statistics such as frequencies of queries and transactions and access
counts to different portions of the database.

g. The history of any changes made to the database and applications, and
documentation that describes the reasons for these changes. This is some-
times referred to as data provenance.

This meta-data is available to DBAs, designers, and authorized users as online sys-
tem documentation. This improves the control of DBAs over the information sys-
tem as well as the users’ understanding and use of the system. The advent of data
warehousing technology (see Chapter 29) has highlighted the importance of meta-
data.

When designing high-performance transaction processing systems, which require
around-the-clock nonstop operation, performance becomes critical. These data-
bases are often accessed by hundreds, or thousands, of transactions per minute from
remote computers and local terminals. Transaction performance, in terms of the
average number of transactions per minute and the average and maximum transac-
tion response time, is critical. A careful physical database design that meets the
organization’s transaction processing needs is a must in such systems.

Some organizations have committed their information resource management to
certain DBMS and data dictionary products. Their investment in the design and
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implementation of large and complex systems makes it difficult for them to change
to newer DBMS products, which means that the organizations become locked in to
their current DBMS system. With regard to such large and complex databases, we
cannot overemphasize the importance of a careful design that takes into account the
need for possible system modifications—called tuning—to respond to changing
requirements. We will discuss tuning in conjunction with query optimization in
Chapter 21. The cost can be very high if a large and complex system cannot evolve,
and it becomes necessary to migrate to other DBMS products and redesign the
whole system.

10.1.2 The Information System Life Cycle

In a large organization, the database system is typically part of an information sys-
tem (IS), which includes all resources that are involved in the collection, manage-
ment, use, and dissemination of the information resources of the organization. In a
computerized environment, these resources include the data itself, the DBMS soft-
ware, the computer system hardware and storage media, the personnel who use and
manage the data (DBA, end users, and so on), the application programs (software)
that accesses and updates the data, and the application programmers who develop
these applications. Thus the database system is part of a much larger organizational
information system.

In this section we examine the typical life cycle of an information system and how
the database system fits into this life cycle. The information system life cycle has
been called the macro life cycle, whereas the database system life cycle has been
referred to as the micro life cycle. The distinction between them is becoming less
pronounced for information systems where databases are a major integral compo-
nent. The macro life cycle typically includes the following phases:

1. Feasibility analysis. This phase is concerned with analyzing potential appli-
cation areas, identifying the economics of information gathering and dis-
semination, performing preliminary cost-benefit studies, determining the
complexity of data and processes, and setting up priorities among applica-
tions.

2. Requirements collection and analysis. Detailed requirements are collected
by interacting with potential users and user groups to identify their particu-
lar problems and needs. Interapplication dependencies, communication,
and reporting procedures are identified.

3. Design. This phase has two aspects: the design of the database system and
the design of the application systems (programs) that use and process the
database through retrievals and updates.

4. Implementation. The information system is implemented, the database is
loaded, and the database transactions are implemented and tested.

5. Validation and acceptance testing. The acceptability of the system in meet-
ing users’ requirements and performance criteria is validated. The system is
tested against performance criteria and behavior specifications.
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6. Deployment, operation, and maintenance. This may be preceded by con-

version of users from an older system as well as by user training. The opera-
tional phase starts when all system functions are operational and have been
validated. As new requirements or applications crop up, they pass through
the previous phases until they are validated and incorporated into the sys-
tem. Monitoring of system performance and system maintenance are impor-
tant activities during the operational phase.

10.1.3 The Database Application System Life Cycle

Activities related to the micro life cycle, which focuses on the database application
system, include the following:

1

. System definition. The scope of the database system, its users, and its

applications are defined. The interfaces for various categories of users, the
response time constraints, and storage and processing needs are identified.

. Database design. A complete logical and physical design of the database

system on the chosen DBMS is prepared.

. Database implementation. This comprises the process of specifying the

conceptual, external, and internal database definitions, creating the (empty)
database files, and implementing the software applications.

. Loading or data conversion. The database is populated either by loading

the data directly or by converting existing files into the database system for-
mat.

. Application conversion. Any software applications from a previous system

are converted to the new system.

. Testing and validation. The new system is tested and validated. Testing and

validation of application programs can be a very involved process, and the
techniques that are employed are usually covered in software engineering
courses. There are automated tools that assist in this process, but a discus-
sion is outside the scope of this textbook.

. Operation. The database system and its applications are put into opera-

tion. Usually, the old and the new systems are operated in parallel for a
period of time.

. Monitoring and maintenance. During the operational phase, the system is

constantly monitored and maintained. Growth and expansion can occur in
both data content and software applications. Major modifications and reor-
ganizations may be needed from time to time.

Activities 2, 3, and 4 are part of the design and implementation phases of the larger
information system macro life cycle. Our emphasis in Section 10.2 is on activities 2
and 3, which cover the database design and implementation phases. Most databases
in organizations undergo all of the preceding life cycle activities. The conversion
activities (4 and 5) are not applicable when both the database and the applications
are new. When an organization moves from an established system to a new one,
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activities 4 and 5 tend to be very time-consuming and the effort to accomplish them
is often underestimated. In general, there is often feedback among the various steps
because new requirements frequently arise at every stage. Figure 10.1 shows the
feedback loop affecting the conceptual and logical design phases as a result of sys-
tem implementation and tuning.

10.2 The Database Design
and Implementation Process

Now, we focus on activities 2 and 3 of the database application system life cycle,
which are database design and implementation. The problem of database design
can be stated as follows:

Design the logical and physical structure of one or more databases to accommodate the
information needs of the users in an organization for a defined set of applications.

Figure 10.1
Phases of database design and Data content, structure, Database
implementation for large databases. and constraints applications
Phase 1: Requirements Data Processing
collection requirements requirements
and analysis i i
Phase 2: Conceptual Conceptual Transaction and
database —® Schema design application design
design (DBMS-independent) (DBMS-independent)
Phase 3: Choice
of DBMS
Phase 4: Data model Logical Schema Frequencies,
mapping ™ and view design performance
(logical design) (DBMS-dependent) constraints
# /
Phase 5: Physical Internal /
design Schema design
(DBMS-dependent)
: :

Phase 6: System DDL statements
implementation SDL statements
and tuning

Transaction
and application
implementation
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The goals of database design are multiple:

m Satisfy the information content requirements of the specified users and
applications.

B Provide a natural and easy-to-understand structuring of the information.

B Support processing requirements and any performance objectives, such as
response time, processing time, and storage space.

These goals are very hard to accomplish and measure and they involve an inherent
tradeoff: if one attempts to achieve more naturalness and understandability of the
model, it may be at the cost of performance. The problem is aggravated because the
database design process often begins with informal and incomplete requirements.
In contrast, the result of the design activity is a rigidly defined database schema that
cannot easily be modified once the database is implemented. We can identify six
main phases of the overall database design and implementation process:

1. Requirements collection and analysis

2. Conceptual database design

3. Choice of a DBMS

4. Data model mapping (also called logical database design)
5. Physical database design

6. Database system implementation and tuning

The design process consists of two parallel activities, as illustrated in Figure 10.1.
The first activity involves the design of the data content, structure, and constraints
of the database; the second relates to the design of database applications. To keep
the figure simple, we have avoided showing most of the interactions between these
sides, but the two activities are closely intertwined. For example, by analyzing data-
base applications, we can identify data items that will be stored in the database. In
addition, the physical database design phase, during which we choose the storage
structures and access paths of database files, depends on the applications that will
use these files for querying and updating. On the other hand, we usually specify the
design of database applications by referring to the database schema constructs,
which are specified during the first activity. Clearly, these two activities strongly
influence one another. Traditionally, database design methodologies have primarily
focused on the first of these activities whereas software design has focused on the
second; this may be called data-driven versus process-driven design. It now is rec-
ognized by database designers and software engineers that the two activities should
proceed hand-in-hand, and design tools are increasingly combining them.

The six phases mentioned previously do not typically progress strictly in sequence.
In many cases we may have to modify the design from an earlier phase during a later
phase. These feedback loops among phases—and also within phases—are com-
mon. We show only a couple of feedback loops in Figure 10.1, but many more exist
between various phases. We have also shown some interaction between the data and
the process sides of the figure; many more interactions exist in reality. Phase 1 in
Figure 10.1 involves collecting information about the intended use of the database,
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and Phase 6 concerns database implementation and redesign. The heart of the data-
base design process comprises Phases 2, 4, and 5; we briefly summarize these phases:

® Conceptual database design (Phase 2). The goal of this phase is to produce
a conceptual schema for the database that is independent of a specific
DBMS. We often use a high-level data model such as the ER or EER model
(see Chapters 7 and 8) during this phase. Additionally, we specify as many of
the known database applications or transactions as possible, using a nota-
tion that is independent of any specific DBMS. Often, the DBMS choice is
already made for the organization; the intent of conceptual design is still to
keep it as free as possible from implementation considerations.

® Data model mapping (Phase 4). During this phase, which is also called
logical database design, we map (or transform) the conceptual schema
from the high-level data model used in Phase 2 into the data model of the
chosen DBMS. We can start this phase after choosing a specific type of
DBMS—for example, if we decide to use some relational DBMS but have not
yet decided on which particular one. We call the latter system-independent
(but data model-dependent) logical design. In terms of the three-level DBMS
architecture discussed in Chapter 2, the result of this phase is a conceptual
schema in the chosen data model. In addition, the design of external schemas
(views) for specific applications is often done during this phase.

® Physical database design (Phase 5). During this phase, we design the spec-
ifications for the stored database in terms of physical file storage structures,
record placement, and indexes. This corresponds to designing the internal
schema in the terminology of the three-level DBMS architecture.

® Database system implementation and tuning (Phase 6). During this
phase, the database and application programs are implemented, tested, and
eventually deployed for service. Various transactions and applications are
tested individually and then in conjunction with each other. This typically
reveals opportunities for physical design changes, data indexing, reorganiza-
tion, and different placement of data—an activity referred to as database
tuning. Tuning is an ongoing activity—a part of system maintenance that
continues for the life cycle of a database as long as the database and applica-
tions keep evolving and performance problems are detected.

We discuss each of the six phases of database design in more detail in the following
subsections.

10.2.1 Phase 1: Requirements Collection and Analysis’

Before we can effectively design a database, we must know and analyze the expecta-
tions of the users and the intended uses of the database in as much detail as possi-
ble. This process is called requirements collection and analysis. To specify the
requirements, we first identify the other parts of the information system that will

A part of this section has been contributed by Colin Potts.
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interact with the database system. These include new and existing users and applica-
tions, whose requirements are then collected and analyzed. Typically, the following
activities are part of this phase:

1. The major application areas and user groups that will use the database or
whose work will be affected by it are identified. Key individuals and commit-
tees within each group are chosen to carry out subsequent steps of require-
ments collection and specification.

2. Existing documentation concerning the applications is studied and ana-
lyzed. Other documentation—policy manuals, forms, reports, and organiza-
tion charts—is reviewed to determine whether it has any influence on the
requirements collection and specification process.

3. The current operating environment and planned use of the information is
studied. This includes analysis of the types of transactions and their frequen-
cies as well as of the flow of information within the system. Geographic
characteristics regarding users, origin of transactions, destination of reports,
and so on are studied. The input and output data for the transactions are
specified.

4. Written responses to sets of questions are sometimes collected from the
potential database users or user groups. These questions involve the users’
priorities and the importance they place on various applications. Key indi-
viduals may be interviewed to help in assessing the worth of information
and in setting up priorities.

Requirement analysis is carried out for the final users, or customers, of the database
system by a team of system analysts or requirement experts. The initial require-
ments are likely to be informal, incomplete, inconsistent, and partially incorrect.
Therefore, much work needs to be done to transform these early requirements into
a specification of the application that can be used by developers and testers as the
starting point for writing the implementation and test cases. Because the require-
ments reflect the initial understanding of a system that does not yet exist, they will
inevitably change. Therefore, it is important to use techniques that help customers
converge quickly on the implementation requirements.

There is evidence that customer participation in the development process increases
customer satisfaction with the delivered system. For this reason, many practitioners
use meetings and workshops involving all stakeholders. One such methodology of
refining initial system requirements is called Joint Application Design (JAD). More
recently, techniques have been developed, such as Contextual Design, which involve
the designers becoming immersed in the workplace in which the application is to be
used. To help customer representatives better understand the proposed system, it is
common to walk through workflow or transaction scenarios or to create a mock-up
rapid prototype of the application.

The preceding modes help structure and refine requirements but leave them still in
an informal state. To transform requirements into a better-structured representa-
tion, requirements specification techniques are used. These include object-
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oriented analysis (OOA), data flow diagrams (DFDs), and the refinement of appli-
cation goals. These methods use diagramming techniques for organizing and pre-
senting information-processing requirements. Additional documentation in the
form of text, tables, charts, and decision requirements usually accompanies the dia-
grams. There are techniques that produce a formal specification that can be checked
mathematically for consistency and what-if symbolic analyses. These methods may
become standard in the future for those parts of information systems that serve
mission-critical functions and which therefore must work as planned. The model-
based formal specification methods, of which the Z-notation and methodology is a
prominent example, can be thought of as extensions of the ER model and are there-
fore the most applicable to information system design.

Some computer-aided techniques—called Upper CASE tools—have been proposed
to help check the consistency and completeness of specifications, which are usually
stored in a single repository and can be displayed and updated as the design pro-
gresses. Other tools are used to trace the links between requirements and other
design entities, such as code modules and test cases. Such traceability databases are
especially important in conjunction with enforced change-management procedures
for systems where the requirements change frequently. They are also used in con-
tractual projects where the development organization must provide documentary
evidence to the customer that all the requirements have been implemented.

The requirements collection and analysis phase can be quite time-consuming, but it
is crucial to the success of the information system. Correcting a requirements error
is more expensive than correcting an error made during implementation because
the effects of a requirements error are usually pervasive, and much more down-
stream work has to be reimplemented as a result. Not correcting a significant error
means that the system will not satisfy the customer and may not even be used at all.
Requirements gathering and analysis is the subject of entire books.

10.2.2 Phase 2: Conceptual Database Design

The second phase of database design involves two parallel activities.” The first activ-
ity, conceptual schema design, examines the data requirements resulting from
Phase 1 and produces a conceptual database schema. The second activity,
transaction and application design, examines the database applications analyzed
in Phase 1 and produces high-level specifications for these applications.

Phase 2a: Conceptual Schema Design. The conceptual schema produced by
this phase is usually contained in a DBMS-independent high-level data model for
the following reasons:

1. The goal of conceptual schema design is a complete understanding of the
database structure, meaning (semantics), interrelationships, and constraints.

2This phase of design is discussed in great detail in the first seven chapters of Batini et al. (1992); we
summarize that discussion here.
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This is best achieved independently of a specific DBMS because each DBMS
typically has idiosyncrasies and restrictions that should not be allowed to
influence the conceptual schema design.

2. The conceptual schema is invaluable as a stable description of the database
contents. The choice of DBMS and later design decisions may change with-
out changing the DBMS-independent conceptual schema.

3. A good understanding of the conceptual schema is crucial for database users
and application designers. Use of a high-level data model that is more
expressive and general than the data models of individual DBMSs is there-
fore quite important.

4. The diagrammatic description of the conceptual schema can serve as a vehi-
cle of communication among database users, designers, and analysts.
Because high-level data models usually rely on concepts that are easier to
understand than lower-level DBMS-specific data models, or syntactic defini-
tions of data, any communication concerning the schema design becomes
more exact and more straightforward.

In this phase of database design, it is important to use a conceptual high-level data
model with the following characteristics:

1. Expressiveness. The data model should be expressive enough to distin-
guish different types of data, relationships, and constraints.

2. Simplicity and understandability. The model should be simple enough for
typical nonspecialist users to understand and use its concepts.

3. Minimality. The model should have a small number of basic concepts that
are distinct and nonoverlapping in meaning.

4. Diagrammatic representation. The model should have a diagrammatic
notation for displaying a conceptual schema that is easy to interpret.

5. Formality. A conceptual schema expressed in the data model must repre-
sent a formal unambiguous specification of the data. Hence, the model con-
cepts must be defined accurately and unambiguously.

Some of these requirements—the first one in particular—sometimes conflict with
the other requirements. Many high-level conceptual models have been proposed for
database design (see the Selected Bibliography in Chapter 8). In the following dis-
cussion, we will use the terminology of the Enhanced Entity-Relationship (EER)
model presented in Chapter 8 and we will assume that it is being used in this phase.
Conceptual schema design, including data modeling, is becoming an integral part
of object-oriented analysis and design methodologies. The UML has class diagrams
that are largely based on extensions of the EER model.

Approaches to Conceptual Schema Design. For conceptual schema design, we must
identify the basic components (or constructs) of the schema: the entity types, rela-
tionship types, and attributes. We should also specify key attributes, cardinality and
participation constraints on relationships, weak entity types, and specialization/ gen-
eralization hierarchies/lattices. There are two approaches to designing the
conceptual schema, which is derived from the requirements collected during Phase 1.
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The first approach is the centralized (or one shot) schema design approach, in
which the requirements of the different applications and user groups from Phase 1
are merged into a single set of requirements before schema design begins. A single
schema corresponding to the merged set of requirements is then designed. When
many users and applications exist, merging all the requirements can be an arduous
and time-consuming task. The assumption is that a centralized authority, the DBA,
is responsible for deciding how to merge the requirements and for designing the
conceptual schema for the whole database. Once the conceptual schema is designed
and finalized, external schemas for the various user groups and applications can be
specified by the DBA.

The second approach is the view integration approach, in which the requirements
are not merged. Rather a schema (or view) is designed for each user group or appli-
cation based only on its own requirements. Thus we develop one high-level schema
(view) for each such user group or application. During a subsequent view integra-
tion phase, these schemas are merged or integrated into a global conceptual
schema for the entire database. The individual views can be reconstructed as exter-
nal schemas after view integration.

The main difference between the two approaches lies in the manner and stage in
which multiple views or requirements of the many users and applications are recon-
ciled and merged. In the centralized approach, the reconciliation is done manually by
the DBA staff prior to designing any schemas and is applied directly to the require-
ments collected in Phase 1. This places the burden to reconcile the differences and
conflicts among user groups on the DBA staff. The problem has been typically dealt
with by using external consultants/design experts, who apply their specific methods
for resolving these conflicts. Because of the difficulties of managing this task, the
view integration approach has been proposed as an alternative technique.

In the view integration approach, each user group or application actually designs its
own conceptual (EER) schema from its requirements, with assistance from the DBA
staff. Then an integration process is applied to these schemas (views) by the DBA to
form the global integrated schema. Although view integration can be done manu-
ally, its application to a large database involving dozens of user groups requires a
methodology and the use of automated tools. The correspondences among the
attributes, entity types, and relationship types in various views must be specified
before the integration can be applied. Additionally, problems such as integrating
conflicting views and verifying the consistency of the specified interschema corre-
spondences must be dealt with.

Strategies for Schema Design. Given a set of requirements, whether for a single user
or for a large user community, we must create a conceptual schema that satisfies
these requirements. There are various strategies for designing such a schema. Most
strategies follow an incremental approach—that is, they start with some important
schema constructs derived from the requirements and then they incrementally mod-
ify, refine, and build on them. We now discuss some of these strategies:

1. Top-down strategy. We start with a schema containing high-level abstrac-
tions and then apply successive top-down refinements. For example, we may
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specify only a few high-level entity types and then, as we specify their attrib-
utes, split them into lower-level entity types and specify the relationships.
The process of specialization to refine an entity type into subclasses that we
illustrated in Sections 8.2 and 8.3 (see Figures 8.1, 8.4, and 8.5) is another
activity during a top-down design strategy.

2. Bottom-up strategy. Start with a schema containing basic abstractions and
then combine or add to these abstractions. For example, we may start with
the database attributes and group these into entity types and relationships.
We may add new relationships among entity types as the design progresses.
The process of generalizing entity types into higher-level generalized super-
classes (see Sections 8.2 and 8.3 and Figure 8.3) is another activity during a
bottom-up design strategy.

3. Inside-out strategy. This is a special case of a top-down strategy, where
attention is focused on a central set of concepts that are most evident.
Modeling then spreads outward by considering new concepts in the vicinity
of existing ones. We could specify a few clearly evident entity types in the
schema and continue by adding other entity types and relationships that are
related to each.

4. Mixed strategy. Instead of following any particular strategy throughout the
design, the requirements are partitioned according to a top-down strategy,
and part of the schema is designed for each partition according to a bottom-
up strategy. The various schema parts are then combined.

Figures 10.2 and 10.3 illustrate some simple examples of top-down and bottom-up
refinement, respectively. An example of a top-down refinement primitive is decom-
position of an entity type into several entity types. Figure 10.2(a) shows a COURSE
being refined into COURSE and SEMINAR, and the TEACHES relationship is corre-
spondingly split into TEACHES and OFFERS. Figure 10.2(b) shows a
COURSE_OFFERING entity type being refined into two entity types (COURSE and
INSTRUCTOR) and a relationship between them. Refinement typically forces a
designer to ask more questions and extract more constraints and details: for exam-
ple, the (min, max) cardinality ratios between COURSE and INSTRUCTOR are
obtained during refinement. Figure 10.3(a) shows the bottom-up refinement prim-
itive of generating relationships among the entity types FACULTY and STUDENT.
Two relationships are identified: ADVISES and COMMITTEE_CHAIR_OF. The
bottom-up refinement using categorization (union type) is illustrated in Figure
10.3(b), where the new concept of VEHICLE_OWNER is discovered from the existing
entity types FACULTY, STAFF, and STUDENT; this process of creating a category and
the related diagrammatic notation follows what we introduced in Section 8.4.

Schema (View) Integration. For large databases with many expected users and appli-
cations, the view integration approach of designing individual schemas and then
merging them can be used. Because the individual views can be kept relatively small,
design of the schemas is simplified. However, a methodology for integrating the
views into a global database schema is needed. Schema integration can be divided
into the following subtasks:
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| COURSE_OFFERING | Examples of top-
down refinement. (a)
L Generating a new

entity type. (b)
Decomposing an
entity type into two
entity types and a
relationship type.

OFFERED_BY

INSTRUCTOR

1. Identifying correspondences and conflicts among the schemas. Because
the schemas are designed individually, it is necessary to specify constructs in
the schemas that represent the same real-world concept. These correspon-
dences must be identified before integration can proceed. During this
process, several types of conflicts among the schemas may be discovered:

a. Naming conflicts. These are of two types: synonyms and homonyms. A
synonym occurs when two schemas use different names to describe the
same concept; for example, an entity type CUSTOMER in one schema may
describe the same concept as an entity type CLIENT in another schema. A
homonym occurs when two schemas use the same name to describe dif-
ferent concepts; for example, an entity type PART may represent computer
parts in one schema and furniture parts in another schema.

b. Type conflicts. The same concept may be represented in two schemas by
different modeling constructs. For example, the concept of a
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@

FACULTY
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STUDENT STUDENT
(b) | PARKING_DECAL | | PARKING_DECAL |
T
| FACULTY | | STAFF | | STUDENT | | VEHICLE_OWNER |
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Figure 10.3 IS A_ IS_A_ IS_A_
Examples of bottom-up refinement. (a) Discovering FACULTY STAFF STUDENT
and adding new relationships. (b) Discovering a FACULTY ‘ ’ STAFF ‘ ’ STUDENT

new category (union type) and relating it.

DEPARTMENT may be an entity type in one schema and an attribute in

another.

c. Domain (value set) conflicts. An attribute may have different domains
in two schemas. For example, Ssn may be declared as an integer in one
schema and as a character string in the other. A conflict of the unit of
measure could occur if one schema represented Weight in pounds and the

other used kilograms.

d. Conflicts among constraints. Two schemas may impose different con-
straints; for example, the key of an entity type may be different in each
schema. Another example involves different structural constraints on
a relationship such as TEACHES; one schema may represent it as 1:N (a
course has one instructor), while the other schema represents it as M:N (a

course may have more than one instructor).
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2. Modifying views to conform to one another. Some schemas are modified
so that they conform to other schemas more closely. Some of the conflicts
identified in the first subtask are resolved during this step.

3. Merging of views. The global schema is created by merging the individual
schemas. Corresponding concepts are represented only once in the global
schema, and mappings between the views and the global schema are speci-
fied. This is the most difficult step to achieve in real-life databases involving
dozens or hundreds of entities and relationships. It involves a considerable
amount of human intervention and negotiation to resolve conflicts and to
settle on the most reasonable and acceptable solutions for a global schema.

4. Restructuring. As a final optional step, the global schema may be analyzed
and restructured to remove any redundancies or unnecessary complexity.

Some of these ideas are illustrated by the rather simple example presented in Figures
10.4 and 10.5. In Figure 10.4, two views are merged to create a bibliographic data-
base. During identification of correspondences between the two views, we discover
that RESEARCHER and AUTHOR are synonyms (as far as this database is con-
cerned), as are CONTRIBUTED_BY and WRITTEN_BY. Further, we decide to modify
VIEW 1 to include a SUBJECT for ARTICLE, as shown in Figure 10.4, to conform to
VIEW 2. Figure 10.5 shows the result of merging MODIFIED VIEW 1 with VIEW 2. We
generalize the entity types ARTICLE and BOOK into the entity type PUBLICATION,
with their common attribute Title. The relationships CONTRIBUTED_BY and
WRITTEN_BY are merged, as are the entity types RESEARCHER and AUTHOR. The
attribute Publisher applies only to the entity type BOOK, whereas the attribute Size
and the relationship type PUBLISHED_IN apply only to ARTICLE.

This simple example illustrates the complexity of the merging process and how the
meaning of the various concepts must be accounted for in simplifying the resultant
schema design. For real-life designs, the process of schema integration requires a
more disciplined and systematic approach. Several strategies have been proposed
for the view integration process (see Figure 10.6):

1. Binary ladder integration. Two schemas that are quite similar are integrated
first. The resulting schema is then integrated with another schema, and the
process is repeated until all schemas are integrated. The ordering of schemas
for integration can be based on some measure of schema similarity. This strat-
egy is suitable for manual integration because of its step-by-step approach.

2. N-ary integration. All the views are integrated in one procedure after an
analysis and specification of their correspondences. This strategy requires
computerized tools for large design problems. Such tools have been built as
research prototypes but are not yet commercially available.

3. Binary balanced strategy. Pairs of schemas are integrated first, then the
resulting schemas are paired for further integration; this procedure is
repeated until a final global schema results.

4. Mixed strategy. Initially, the schemas are partitioned into groups based on
their similarity, and each group is integrated separately. The intermediate
schemas are grouped again and integrated, and so on.
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Figure 10.4
Modifying views to conform before integration.
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Figure 10.5
Integrated schema
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Phase 2b: Transaction Design. The purpose of Phase 2b, which proceeds in
parallel with Phase 2a, is to design the characteristics of known database transac-
tions (applications) in a DBMS-independent way. When a database system is being
designed, the designers are aware of many known applications (or transactions)
that will run on the database once it is implemented. An important part of database
design is to specify the functional characteristics of these transactions early on in
the design process. This ensures that the database schema will include all the infor-
mation required by these transactions. In addition, knowing the relative importance
of the various transactions and the expected rates of their invocation plays a crucial
part during the physical database design (Phase 5). Usually, not all of the database
transactions are known at design time; after the database system is implemented,
new transactions are continuously identified and implemented. However, the most
important transactions are often known in advance of system implementation and
should be specified at an early stage. The informal 80-20 rule typically applies in this
context: 80 percent of the workload is represented by 20 percent of the most fre-
quently used transactions, which govern the physical database design. In applica-
tions that are of the ad hoc querying or batch processing variety, queries and
applications that process a substantial amount of data must be identified.

A common technique for specifying transactions at a conceptual level is to identify
their input/output and functional behavior. By specifying the input and output
parameters (arguments) and the internal functional flow of control, designers can
specify a transaction in a conceptual and system-independent way. Transactions
usually can be grouped into three categories: (1) retrieval transactions, which are
used to retrieve data for display on a screen or for printing of a report; (2) update
transactions, which are used to enter new data or to modify existing data in the
database; and (3) mixed transactions, which are used for more complex applica-
tions that do some retrieval and some update. For example, consider an airline
reservations database. A retrieval transaction could first list all morning flights on
a given date between two cities. An update transaction could be to book a seat on a
particular flight. A mixed transaction may first display some data, such as showing a
customer reservation on some flight, and then update the database, such as cancel-
ing the reservation by deleting it, or by adding a flight segment to an existing reser-
vation. Transactions (applications) may originate in a front-end tool such as
PowerBuilder (Sybase), which collect parameters online and then send a transaction
to the DBMS as a backend.’

Several techniques for requirements specification include notation for specifying
processes, which in this context are more complex operations that can consist of
several transactions. Process modeling tools like BPwin as well as workflow model-
ing tools are becoming popular to identify information flows in organizations. The
UML language, which provides for data modeling via class and object diagrams, has
a variety of process modeling diagrams including state transition diagrams, activity
diagrams, sequence diagrams, and collaboration diagrams. All of these refer to

SThis philosophy has been followed for over 20 years in popular products like CICS, which serves as a
tool to generate transactions for legacy DBMSs like IMS.
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activities, events, and operations within the information system, the inputs and out-
puts of the processes, the sequencing or synchronization requirements, and other
conditions. It is possible to refine these specifications and extract individual trans-
actions from them. Other proposals for specifying transactions include TAXIS,
GALILEO, and GORDAS (see this chapter’s Selected Bibliography). Some of these
have been implemented into prototype systems and tools. Process modeling still
remains an active area of research.

Transaction design is just as important as schema design, but it is often considered
to be part of software engineering rather than database design. Many current design
methodologies emphasize one over the other. One should go through Phases 2a and
2b in parallel, using feedback loops for refinement, until a stable design of schema
and transactions is reached.*

10.2.3 Phase 3: Choice of a DBMS

The choice of a DBMS is governed by a number of factors—some technical, others
economic, and still others concerned with the politics of the organization. The tech-
nical factors focus on the suitability of the DBMS for the task at hand. Issues to con-
sider are the type of DBMS (relational, object-relational, object, other), the storage
structures and access paths that the DBMS supports, the user and programmer
interfaces available, the types of high-level query languages, the availability of devel-
opment tools, the ability to interface with other DBMSs via standard interfaces, the
architectural options related to client-server operation, and so on. Nontechnical
factors include the financial status and the support organization of the vendor. In
this section we concentrate on discussing the economic and organizational factors
that affect the choice of DBMS. The following costs must be considered:

1. Software acquisition cost. This is the up-front cost of buying the software,
including programming language options, different interface options
(forms, menu, and Web-based graphic user interface (GUI) tools), recov-
ery/backup options, special access methods, and documentation. The cor-
rect DBMS version for a specific operating system must be selected.
Typically, the development tools, design tools, and additional language sup-
port are not included in basic pricing.

2. Maintenance cost. This is the recurring cost of receiving standard mainte-
nance service from the vendor and for keeping the DBMS version up-to-
date.

3. Hardware acquisition cost. New hardware may be needed, such as addi-

tional memory, terminals, disk drives and controllers, or specialized DBMS
storage and archival storage.

4. Database creation and conversion cost. This is the cost of either creating
the database system from scratch or converting an existing system to the new

“High-level transaction modeling is covered in Batini et al. (1992, Chapters 8, 9, and 11). The joint func-
tional and data analysis philosophy is advocated throughout that book.
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DBMS software. In the latter case it is customary to operate the existing sys-
tem in parallel with the new system until all the new applications are fully
implemented and tested. This cost is hard to project and is often underesti-
mated.

5. Personnel cost. Acquisition of DBMS software for the first time by an
organization is often accompanied by a reorganization of the data processing
department. Positions of DBA and staff exist in most companies that have
adopted DBMSs.

6. Training cost. Because DBMSs are often complex systems, personnel must
often be trained to use and program the DBMS. Training is required at all
levels, including programming and application development, physical
design, and database administration.

7. Operating cost. The cost of continued operation of the database system is
typically not worked into an evaluation of alternatives because it is incurred
regardless of the DBMS selected.

The benefits of acquiring a DBMS are not so easy to measure and quantify. A DBMS
has several intangible advantages over traditional file systems, such as ease of use,
consolidation of company-wide information, wider availability of data, and faster
access to information. With Web-based access, certain parts of the data can be made
globally accessible to employees as well as external users. More tangible benefits
include reduced application development cost, reduced redundancy of data, and
better control and security. Although databases have been firmly entrenched in
most organizations, the decision of whether to move an application from a file-
based to a database-centered approach still comes up. This move is generally driven
by the following factors:

1. Data complexity. As data relationships become more complex, the need for
a DBMS is greater.

2. Sharing among applications. The need for a DBMS is greater when appli-
cations share common data stored redundantly in multiple files.

3. Dynamically evolving or growing data. If the data changes constantly, it is
easier to cope with these changes using a DBMS than using a file system.

4. Frequency of ad hoc requests for data. File systems are not at all suitable
for ad hoc retrieval of data.

5. Data volume and need for control. The sheer volume of data and the need
to control it sometimes demands a DBMS.

It is difficult to develop a generic set of guidelines for adopting a single approach to
data management within an organization—whether relational, object-oriented, or
object-relational. If the data to be stored in the database has a high level of complex-
ity and deals with multiple data types, the typical approach may be to consider an
object or object-relational DBMS.> Also, the benefits of inheritance among classes

5See the discussion in Chapter 11 concerning this issue.
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and the corresponding advantage of reuse favor these approaches. Finally, several
economic and organizational factors affect the choice of one DBMS over another:

1. Organization-wide adoption of a certain philosophy. This is often a dom-
inant factor affecting the acceptability of a certain data model (for example,
relational versus object), a certain vendor, or a certain development method-
ology and tools (for example, use of an object-oriented analysis and design
tool and methodology may be required of all new applications).

2. Familiarity of personnel with the system. If the programming staff within
the organization is familiar with a particular DBMS, it may be favored to
reduce training cost and learning time.

3. Availability of vendor services. The availability of vendor assistance in
solving problems with the system is important, since moving from a non-
DBMS to a DBMS environment is generally a major undertaking and
requires much vendor assistance at the start.

Another factor to consider is the DBMS portability among different types of hard-
ware. Many commercial DBMSs now have versions that run on many
hardware/software configurations (or platforms). The need of applications for
backup, recovery, performance, integrity, and security must also be considered.
Many DBMSs are currently being designed as fotal solutions to the information-
processing and information resource management needs within organizations.
Most DBMS vendors are combining their products with the following options or
built-in features:

Text editors and browsers
Report generators and listing utilities

Communication software (often called teleprocessing monitors)

Data entry and display features such as forms, screens, and menus with auto-
matic editing features

B Inquiry and access tools that can be used on the World Wide Web (Web-
enabling tools)

B Graphical database design tools

A large amount of third-party software is available that provides added functional-
ity to a DBMS in each of the above areas. In rare cases it may be preferable to
develop in-house software rather than use a DBMS—for example, if the applica-
tions are very well defined and are all known beforehand. Under such circum-
stances, an in-house custom-designed system may be appropriate to implement the
known applications in the most efficient way. In most cases, however, new applica-
tions that were not foreseen at design time come up after system implementation.
This is precisely why DBMSs have become very popular: They facilitate the incorpo-
ration of new applications with only incremental modifications to the existing
design of a database. Such design evolution—or schema evolution—is a feature
present to various degrees in commercial DBMSs.
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10.2.4 Phase 4: Data Model Mapping
(Logical Database Design)

The next phase of database design is to create a conceptual schema and external
schemas in the data model of the selected DBMS by mapping those schemas pro-
duced in Phase 2a. The mapping can proceed in two stages:

1. System-independent mapping. In this stage, the mapping does not consider
any specific characteristics or special cases that apply to the particular DBMS
implementation of the data model. We discussed DBMS-independent map-
ping of an ER schema to a relational schema in Section 9.1 and of EER
schema constructs to relational schemas in Section 9.2.

2. Tailoring the schemas to a specific DBMS. Different DBMSs implement a
data model by using specific modeling features and constraints. We may
have to adjust the schemas obtained in step 1 to conform to the specific
implementation features of a data model as used in the selected DBMS.

The result of this phase should be DDL (data definition language) statements in the
language of the chosen DBMS that specify the conceptual and external level
schemas of the database system. But if the DDL statements include some physical
design parameters, a complete DDL specification must wait until after the physical
database design phase is completed. Many automated CASE (computer-aided soft-
ware engineering) design tools (see Section 10.5) can generate DDL for commercial
systems from a conceptual schema design.

10.2.5 Phase 5: Physical Database Design

Physical database design is the process of choosing specific file storage structures
and access paths for the database files to achieve good performance for the various
database applications. Each DBMS offers a variety of options for file organizations
and access paths. These usually include various types of indexing, clustering of
related records on disk blocks, linking related records via pointers, and various
types of hashing techniques (see Chapters 17 and 18). Once a specific DBMS is cho-
sen, the physical database design process is restricted to choosing the most appro-
priate structures for the database files from among the options offered by that
DBMS. In this section we give generic guidelines for physical design decisions; they
hold for any type of DBMS. The following criteria are often used to guide the choice
of physical database design options:

1. Response time. This is the elapsed time between submitting a database
transaction for execution and receiving a response. A major influence on
response time that is under the control of the DBMS is the database access
time for data items referenced by the transaction. Response time is also
influenced by factors not under DBMS control, such as system load, operat-
ing system scheduling, or communication delays.

2. Space utilization. This is the amount of storage space used by the database
files and their access path structures on disk, including indexes and other
access paths.
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3. Transaction throughput. This is the average number of transactions that
can be processed per minute; it is a critical parameter of transaction systems
such as those used for airline reservations or banking. Transaction through-
put must be measured under peak conditions on the system.

Typically, average and worst-case limits on the preceding parameters are specified as
part of the system performance requirements. Analytical or experimental tech-
niques, which can include prototyping and simulation, are used to estimate the
average and worst-case values under different physical design decisions to deter-
mine whether they meet the specified performance requirements.

Performance depends on record size and number of records in the file. Hence, we
must estimate these parameters for each file. Additionally, we should estimate the
update and retrieval patterns for the file cumulatively from all the transactions.
Attributes used for searching for specific records should have primary access paths
and secondary indexes constructed for them. Estimates of file growth, either in the
record size because of new attributes or in the number of records, should also be
taken into account during physical database design.

The result of the physical database design phase is an initial determination of stor-
age structures and access paths for the database files. It is almost always necessary to
modify the design on the basis of its observed performance after the database sys-
tem is implemented. We include this activity of database tuning in the next phase
and cover it in the context of query optimization in Chapter 20.

10.2.6 Phase 6: Database System Implementation
and Tuning

After the logical and physical designs are completed, we can implement the database
system. This is typically the responsibility of the DBA and is carried out in conjunc-
tion with the database designers. Language statements in the DDL, including the
SDL (storage definition language) of the selected DBMS, are compiled and used to
create the database schemas and (empty) database files. The database can then be
loaded (populated) with the data. If data is to be converted from an earlier comput-
erized system, conversion routines may be needed to reformat the data for loading
into the new database.

Database programs are implemented by the application programmers, by referring
to the conceptual specifications of transactions, and then writing and testing pro-
gram code with embedded DML (data manipulation language) commands. Once
the transactions are ready and the data is loaded into the database, the design and
implementation phase is over and the operational phase of the database system
begins.

Most systems include a monitoring utility to collect performance statistics, which
are kept in the system catalog or data dictionary for later analysis. These include sta-
tistics on the number of invocations of predefined transactions or queries,
input/output activity against files, counts of file disk pages or index records, and fre-
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quency of index usage. As the database system requirements change, it often
becomes necessary to add or remove existing tables and to reorganize some files by
changing primary access methods or by dropping old indexes and constructing new
ones. Some queries or transactions may be rewritten for better performance.
Database tuning continues as long as the database is in existence, as long as per-
formance problems are discovered, and while the requirements keep changing (see
Chapter 20).

10.3 Use of UML Diagrams as an Aid
to Database Design Specification®

10.3.1 UML as a Design Specification Standard

There is a need of some standard approach to cover the entire spectrum of require-
ments analysis, modeling, design, implementation, and deployment of databases
and their applications. One approach that is receiving wide attention and that is also
proposed as a standard by the Object Management Group (OMG) is the Unified
Modeling Language (UML) approach. It provides a mechanism in the form of dia-
grammatic notation and associated language syntax to cover the entire life cycle.
Presently, UML can be used by software developers, data modelers, database design-
ers, and so on to define the detailed specification of an application. They also use it
to specify the environment consisting of users, software, communications, and
hardware to implement and deploy the application.

UML combines commonly accepted concepts from many object-oriented (O-O)
methods and methodologies (see this chapter’s Selected Bibliography for the con-
tributing methodologies that led to UML). It is generic, and is language-independent
and platform-independent. Software architects can model any type of application,
running on any operating system, programming language, or network, in UML. That
has made the approach very widely applicable. Tools like Rational Rose are currently
popular for drawing UML diagrams—they enable software developers to develop
clear and easy-to-understand models for specifying, visualizing, constructing, and
documenting components of software systems. Since the scope of UML extends to
software and application development at large, we will not cover all aspects of UML
here. Our goal is to show some relevant UML notations that are commonly used in
the requirements collection and analysis phase of database design, as well as the con-
ceptual design phase (see Phases 1 and 2 in Figure 10.1). A detailed application devel-
opment methodology using UML is outside the scope of this book and may be found
in various textbooks devoted to object-oriented design, software engineering, and
UML (see the Selected Bibliography at the end of this chapter).

6The contribution of Abrar Ul-Haque to the UML and Rational Rose sections is much appreciated.
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UML has many types of diagrams. Class diagrams, which can represent the end
result of conceptual database design, were discussed in Sections 7.8 and 8.6. To
arrive at the class diagrams, the application requirements may be gathered and spec-
ified using use case diagrams, sequence diagrams, and statechart diagrams. In the
rest of this section we introduce the different types of UML diagrams briefly to give
the reader an idea of the scope of UML. Then we describe a small sample applica-
tion to illustrate the use of some of these diagrams and show how they lead to the
eventual class diagram as the final conceptual database design. The diagrams pre-
sented in this section pertain to the standard UML notation and have been drawn
using Rational Rose. Section 10.4 is devoted to a general discussion of the use of
Rational Rose in database application design.

10.3.2 UML for Database Application Design

UML was developed as a software engineering methodology. As we mentioned ear-
lier in Section 7.8, most software systems have sizable database components. The
database community has started embracing UML, and now some database design-
ers and developers are using UML for data modeling as well as for subsequent
phases of database design. The advantage of UML is that even though its concepts
are based on object-oriented techniques, the resulting models of structure and
behavior can be used to design relational, object-oriented, or object-relational
databases (see Chapter 11 for definitions of object databases and object-relational
databases).

One of the major contributions of the UML approach has been to bring the tradi-
tional database modelers, analysts, and designers together with the software applica-
tion developers. In Figure 10.1 we showed the phases of database design and
implementation and how they apply to these two groups. UML also allows us to do
behavioral, functional, and dynamic modeling by introducing various types of dia-
grams. This results in a more complete specification/description of the overall data-
base application. In the following sections we summarize the different types of
UML diagrams and then give an example of the use case, sequence, and statechart
diagrams in a sample application.

10.3.3 Different Types of Diagrams in UML
UML defines nine types of diagrams divided into these two categories:

® Structural Diagrams. These describe the structural or static relationships
among schema objects, data objects, and software components. They include
class diagrams, object diagrams, component diagrams, and deployment dia-
grams.

B Behavioral Diagrams. Their purpose is to describe the behavioral or
dynamic relationships among components. They include use case diagrams,
sequence diagrams, collaboration diagrams, statechart diagrams, and activ-
ity diagrams.
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We introduce the nine types briefly below. The structural diagrams include:

A. Class Diagrams. Class diagrams capture the static structure of the system and
act as foundation for other models. They show classes, interfaces, collaborations,
dependencies, generalizations, associations, and other relationships. Class diagrams
are a very useful way to model the conceptual database schema. We showed exam-
ples of class diagrams for the COMPANY database schema in Figure 7.16 and for a
generalization hierarchy in Figure 8.10.

Package Diagrams. Package diagrams are a subset of class diagrams. They organize
elements of the system into related groups called packages. A package may be a col-
lection of related classes and the relationships between them. Package diagrams help
minimize dependencies in a system.

B. Object Diagrams. Object diagrams show a set of individual objects and their
relationships, and are sometimes referred to as instance diagrams. They give a static
view of a system at a particular time and are normally used to test class diagrams for
accuracy.

C. Component Diagrams. Component diagrams illustrate the organizations and
dependencies among software components. A component diagram typically consists
of components, interfaces, and dependency relationships. A component may be a
source code component, a runtime component, or an executable component. It is a
physical building block in the system and is represented as a rectangle with two small
rectangles or tabs overlaid on its left side. An interface is a group of operations used
or created by a component and is usually represented by a small circle. Dependency
relationship is used to model the relationship between two components and is repre-
sented by a dotted arrow pointing from a component to the component it depends
on. For databases, component diagrams stand for stored data such as tablespaces or
partitions. Interfaces refer to applications that use the stored data.

D. Deployment Diagrams. Deployment diagrams represent the distribution of
components (executables, libraries, tables, files) across the hardware topology. They
depict the physical resources in a system, including nodes, components, and con-
nections, and are basically used to show the configuration of runtime processing
elements (the nodes) and the software processes that reside on them (the threads).

Next, we briefly describe the various types of behavioral diagrams and expand on
those that are of particular interest.

E. Use Case Diagrams. Use case diagrams are used to model the functional
interactions between users and the system. A scenario is a sequence of steps describ-
ing an interaction between a user and a system. A use case is a set of scenarios that
have a common goal. The use case diagram was introduced by Jacobson’ to visual-
ize use cases. A use case diagram shows actors interacting with use cases and can be
understood easily without the knowledge of any notation. An individual use case is

7See Jacobson et al. (1992).
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shown as an oval and stands for a specific task performed by the system. An actor,
shown with a stick person symbol, represents an external user, which may be a
human user, a representative group of users, a certain role of a person in the organ-
ization, or anything external to the system (see Figure 10.7). The use case diagram
shows possible interactions of the system (in our case, a database system) and
describes as use cases the specific tasks the system performs. Since they do not spec-
ify any implementation detail and are supposed to be easy to understand, they are
used as a vehicle for communicating between the end users and developers to help
in easier user validation at an early stage. Test plans can also be described using use
case diagrams. Figure 10.7 shows the use case diagram notation. The include rela-
tionship is used to factor out some common behavior from two or more of the orig-
inal use cases—it is a form of reuse. For example, in a university environment
shown in Figure 10.8, the use cases Register for course and Enter grades in which the
actors student and professor are involved, include a common use case called
Validate user. If a use case incorporates two or more significantly different scenarios,
based on circumstances or varying conditions, the extend relationship is used to
show the subcases attached to the base case.

Interaction Diagrams. The next two types of UML behavioral diagrams, interaction
diagrams, are used to model the dynamic aspects of a system. They consist of a set
of messages exchanged between a set of objects. There are two types of interaction
diagrams, sequence and collaboration.

F. Sequence Diagrams. Sequence diagrams describe the interactions between
various objects over time. They basically give a dynamic view of the system by
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showing the flow of messages between objects. Within the sequence diagram, an
object or an actor is shown as a box at the top of a dashed vertical line, which is
called the object’s lifeline. For a database, this object is typically something physi-
cal—a book in a warehouse that would be represented in the database, an external
document or form such as an order form, or an external visual screen—that may be
part of a user interface. The lifeline represents the existence of an object over time.
Activation, which indicates when an object is performing an action, is represented
as a rectangular box on a lifeline. Each message is represented as an arrow between
the lifelines of two objects. A message bears a name and may have arguments and
control information to explain the nature of the interaction. The order of messages
is read from top to bottom. A sequence diagram also gives the option of self-call,
which is basically just a message from an object to itself. Condition and Iteration
markers can also be shown in sequence diagrams to specify when the message
should be sent and to specify the condition to send multiple markers. A return
dashed line shows a return from the message and is optional unless it carries a
special meaning. Object deletion is shown with a large X. Figure 10.9 explains some
of the notation used in sequence diagrams.

G. Collaboration Diagrams. Collaboration diagrams represent interactions
among objects as a series of sequenced messages. In collaboration diagrams the
emphasis is on the structural organization of the objects that send and receive mes-
sages, whereas in sequence diagrams the emphasis is on the time-ordering of the
messages. Collaboration diagrams show objects as icons and number the messages;
numbered messages represent an ordering. The spatial layout of collaboration dia-
grams allows linkages among objects that show their structural relationships. Use of
collaboration and sequence diagrams to represent interactions is a matter of choice
as they can be used for somewhat similar purposes; we will hereafter use only
sequence diagrams.
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H. Statechart Diagrams. Statechart diagrams describe how an object’s state
changes in response to external events.

To describe the behavior of an object, it is common in most object-oriented tech-
niques to draw a statechart diagram to show all the possible states an object can get
into in its lifetime. The UML statecharts are based on David Harel’s® statecharts.
They show a state machine consisting of states, transitions, events, and actions and
are very useful in the conceptual design of the application that works against a data-
base of stored objects.

The important elements of a statechart diagram shown in Figure 10.10 are as follows:

m States. Shown as boxes with rounded corners, they represent situations in
the lifetime of an object.

B Transitions. Shown as solid arrows between the states, they represent the
paths between different states of an object. They are labeled by the event-
name [guard] /action; the event triggers the transition and the action results
from it. The guard is an additional and optional condition that specifies a
condition under which the change of state may not occur.

m Start/Initial State. Shown by a solid circle with an outgoing arrow to a state.
® Stop/Final State. Shown as a double-lined filled circle with an arrow point-
ing into it from a state.

Statechart diagrams are useful in specifying how an object’s reaction to a message
depends on its state. An event is something done to an object such as receiving a
message; an action is something that an object does such as sending a message.

8See Harel (1987).
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Figure 10.10
The statechart diagram
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I. Activity Diagrams. Activity diagrams present a dynamic view of the system by
modeling the flow of control from activity to activity. They can be considered as
flowcharts with states. An activity is a state of doing something, which could be a
real-world process or an operation on some object or class in the database.
Typically, activity diagrams are used to model workflow and internal business oper-
ations for an application.

10.3.4 A Modeling and Design Example:
UNIVERSITY Database

In this section we will briefly illustrate the use of some of the UML diagrams we
presented above to design a simple database in a university setting. A large number
of details are left out to conserve space; only a stepwise use of these diagrams that
leads toward a conceptual design and the design of program components is illus-
trated. As we indicated before, the eventual DBMS on which this database gets
implemented may be relational, object-oriented, or object-relational. That will not
change the stepwise analysis and modeling of the application using the UML
diagrams.

Imagine a scenario with students enrolling in courses that are offered by professors.
The registrar’s office is in charge of maintaining a schedule of courses in a course
catalog. They have the authority to add and delete courses and to do schedule
changes. They also set enrollment limits on courses. The financial aid office is in
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charge of processing student aid applications for which the students have to apply.
Assume that we have to design a database that maintains the data about students,
professors, courses, financial aid, and so on. We also want to design some of the
applications that enable us to do course registration, financial aid application pro-
cessing, and maintaining of the university-wide course catalog by the registrar’s
office. The above requirements may be depicted by a series of UML diagrams.

As mentioned previously, one of the first steps involved in designing a database is to
gather customer requirements by using use case diagrams. Suppose one of the
requirements in the UNIVERSITY database is to allow the professors to enter grades
for the courses they are teaching and for the students to be able to register for
courses and apply for financial aid. The use case diagram corresponding to these use
cases can be drawn as shown in Figure 10.8.

Another helpful element when designing a system is to graphically represent some
of the states the system can be in, to visualize the various states the system can be in
during the course of an application. For example, in our UNIVERSITY database the
various states that the system goes through when the registration for a course with
50 seats is opened can be represented by the statechart diagram in Figure 10.11. This
shows the states of a course while enrollment is in process. The first state sets the
count of students enrolled to zero. During the enrolling state, the Enroll student
transition continues as long as the count of enrolled students is less than 50. When
the count reaches 50, the state to close the section is entered. In a real system, addi-
tional states and/or transitions could be added to allow a student to drop a section
and any other needed actions.

Next, we can design a sequence diagram to visualize the execution of the use cases.
For the university database, the sequence diagram corresponds to the use case:
student requests to register and selects a particular course to register is shown in Figure

Specification
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10.12. The catalog is first browsed to get course listings. Then, when the student
selects a course to register in, prerequisites and course capacity are checked, and the
course is then added to the student’s schedule if the prerequisites are met and there
is space in the course.

These UML diagrams are not the complete specification of the UNIVERSITY data-
base. There will be other use cases for the various applications of the actors, includ-
ing registrar, student, professor, and so on. A complete methodology for how to
arrive at the class diagrams from the various diagrams we illustrated in this section
is outside our scope here. Design methodologies remain a matter of judgment and
personal preferences. However, the designer should make sure that the class dia-
gram will account for all the specifications that have been given in the form of the
use cases, statechart, and sequence diagrams. The class diagram in Figure 10.13
shows a possible class diagram for this application, with the structural relationships
and the operations within the classes. These classes will need to be implemented to
develop the UNIVERSITY database, and together with the operations they will
implement the complete class schedule/enrollment/aid application. Only some of
the attributes and methods (operations) are shown in Figure 10.13. It is likely that
these class diagrams will be modified as more details are specified and more func-
tions evolve in the UNIVERSITY application.
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10.4 Rational Rose: A UML-Based Design Tool

10.4.1 Rational Rose for Database Design

Rational Rose is one of the modeling tools used in the industry to develop informa-
tion systems. It was acquired by IBM in 2003. As we pointed out in the first two sec-
tions of this chapter, a database is a central component of most information
systems. Rational Rose provides the initial specification in UML that eventually
leads to the database development. Many extensions have been made in the latest
versions of Rose for data modeling, and now it provides support for conceptual,
logical, and physical database modeling and design.
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10.4.2 Rational Rose Data Modeler

Rational Rose Data Modeler is a visual modeling tool for designing databases.
Because it is UML-based, it provides a common tool and language to bridge the
communication gap between database designers and application developers. This
makes it possible for database designers, developers, and analysts to work together,
capture and share business requirements, and track them as they change through-
out the process. Also, by allowing the designers to model and design all specifica-
tions on the same platform using the same notation, it improves the design process
and reduces the risk of errors.

The process modeling capabilities in Rational Rose allow the modeling of the
behavior of database applications as we saw in the short example above, in the form
of use cases (Figure 10.8), sequence diagrams (Figure 10.12), and statechart dia-
grams (Figure 10.11). There is the additional machinery of collaboration diagrams
to show interactions between objects and activity diagrams to model the flow of
control, which we did not show in our example. The eventual goal is to generate the
database specification and application code as much as possible. The Rose Data
Modeler can also capture triggers, stored procedures, and other modeling concepts
explicitly in the diagram rather than representing them with hidden tagged values
behind the scenes (see Chapter 26 which discusses active databases and triggers).
The Rose Data Modeler also provides the capability to forward engineer a database
in terms of constantly changing requirements and reverse engineer an existing
implemented database into its conceptual design.

10.4.3 Data Modeling Using Rational Rose Data Modeler

There are many tools and options available in Rose Data Modeler for data modeling.

Reverse Engineering. Reverse engineering of a database allows the user to create
a conceptual data model based on an existing database schema specified in a DDL
file. We can use the reverse engineering wizard in Rational Rose Data Modeler for
this purpose. The reverse engineering wizard basically reads the schema in the data-
base or DDL file and recreates it as a data model. While doing so, it also includes the
names of all quoted identifier entities.

Forward Engineering and DDL Generation. We can also create a data model
directly from scratch in Rose. Having created the data model,? we can also use it to
generate the DDL for a specific DBMS. There is a forward engineering wizard in the
Rose Data Modeler that reads the schema in the data model or reads both the
schema in the data model and the tablespaces in the data storage model and gener-
ates the appropriate DDL code in a DDL file. The wizard also provides the option of
generating a database by executing the generated DDL file.

9The term data model used by Rational Rose Data Modeler corresponds to our notion of an application
model or conceptual schema.
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Conceptual Design in UML Notation. Rational Rose allows modeling of data-
bases using UML notation. ER diagrams most often used in the conceptual design
of databases can be easily built using the UML notation as class diagrams in
Rational Rose. For example, the ER schema of our COMPANY database from
Chapter 7 can be redrawn in Rose using UML notation as shown in Figure 10.14.
The textual specification in Figure 10.14 can be converted to the graphical represen-
tation shown in Figure 10.15 by using the data model diagram option in Rose.

Figure 10.15 is similar to Figure 7.16, except that it is using the notation provided by
Rational Rose. Hence, it can be considered as an ER diagram using UML notation,
with the inclusion of methods and other details. Identifying relationships specify
that an object in a child class (DEPENDENT in Figure 10.15) cannot exist without a
corresponding parent object in the parent class (EMPLOYEE in Figure 10.15),
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Figure 10.14
A logical data model diagram definition in Rational Rose.
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whereas non-identifying relationships specify a regular association (relationship)
between two independent classes. It is possible to update the schemas directly in
their text or graphical form. For example, if the relationship between the

EMPLOYEE and PROJECT called WORKS_ON was deleted, Rose would automati-

cally update or delete all the foreign keys in the relevant tables.
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An important difference in Figure 10.15 from our previous ER notation shown in
Chapters 7 and 8 is that foreign key attributes actually appear in the class diagrams
in Rational Rose. This is common in several diagrammatic notations to make the
conceptual design closer to the way it is realized in the relational model implemen-
tation. In Chapters 7 and 8, the conceptual ER and EER diagrams and the UML class
diagrams did not include foreign key attributes, which were added to the relational
schema during the mapping process (see Chapter 9).

Converting Logical Data Model to Object Model and Vice Versa. Rational
Rose Data Modeler also provides the option of converting a logical database design
(relational schema) to an object model design (object schema) and vice versa. For
example, the logical data model shown in Figure 10.14 can be converted to an object
model. This sort of mapping allows a deep understanding of the relationships
between the conceptual model and implementation model, and helps in keeping
them both up-to-date when changes are made to either model during the develop-
ment process. Figure 10.16 shows the Employee table after converting it to a class in
an object model. The various tabs in the window can then be used to enter/display
different types of information. They include operations, attributes, and relation-
ships for that class.

Synchronization between the Conceptual Design and the Actual
Database. Rose Data Modeler allows keeping the data model and database imple-
mentation synchronized. It allows visualizing both the data model and the database
and then, based on the differences, it gives the option to update the model or change
the database.

Extensive Domain Support. The Rose Data Modeler allows database designers
to create a standard set of user-defined data types (these are similar to domains in
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SQL; see Chapter 4) and assign them to any column in the data model. Properties of
the domain are then cascaded to assigned columns. These domains can then be
maintained by a standards group and deployed to all modelers when they begin cre-
ating new models by using the Rational Rose framework.

Easy Communication among Design Teams. As mentioned earlier, using a
common tool allows easy communication between teams. In the Rose Data
Modeler, an application developer can access both the object and data models and
see how they are related, and thus make informed and better choices about how to
build data access methods. There is also the option of using Rational Rose Web
Publisher to allow the models and the meta-data beneath these models to be avail-
able to everyone on the team.

What we have described above is a partial description of the capabilities of the
Rational Rose tool as it relates to the conceptual and logical design phases in Figure
10.1. The entire range of UML diagrams we described in Section 10.3 can be devel-
oped and maintained in Rose. For further details the reader is referred to the prod-
uct literature. Figure 10.17 gives another version of the class diagram in Figure 7.16
drawn using Rational Rose. Figure 10.17 differs from Figure 10.15 in that the for-
eign key attributes are not shown explicitly. Hence, Figure 10.17 is using the nota-
tions presented in Chapters 7 and 8. Rational Rose allows either option to be used,
depending on the preference of the designers.

10.5 Automated Database Design Tools

The database design activity predominantly spans Phase 2 (conceptual design),
Phase 4 (data model mapping, or logical design), and Phase 5 (physical database
design) in the design process that we discussed in Section 10.2. Discussion of Phase
5 is deferred to Chapter 20 after we present storage and indexing techniques, and
query optimization. We discussed Phases 2 and 4 in detail with the use of the UML
notation in Section 10.3 and pointed out the features of the tool Rational Rose,
which supports these phases, in Section 10.4. As we mentioned, Rational Rose is
more than just a database design tool. It is a software development tool and does
database modeling and schema design in the form of class diagrams as part of its
overall object-oriented application development methodology. In this section, we
summarize the features and shortcomings of the set of commercial tools that are
focused on automating the process of conceptual, logical, and physical design of
databases.

When database technology was first introduced, most database design was carried
out manually by expert designers, who used their experience and knowledge in the
design process. However, at least two factors indicated that some form of automa-
tion had to be utilized if possible:

1. As an application involves more and more complexity of data in terms of
relationships and constraints, the number of options or different designs to
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Rational Rose.

model the same information keeps increasing rapidly. It becomes difficult
to deal with this complexity and the corresponding design alternatives
manually.

. The sheer size of some databases runs into hundreds of entity types and rela-

tionship types, making the task of manually managing these designs almost
impossible. The meta information related to the design process we described
in Section 10.2 yields another database that must be created, maintained,
and queried as a database in its own right.

The above factors have given rise to many tools that come under the general cate-
gory of CASE (computer-aided software engineering) tools for database design.
Rational Rose is a good example of a modern CASE tool. Typically these tools con-
sist of a combination of the following facilities:

1.

Diagramming. This allows the designer to draw a conceptual schema dia-
gram in some tool-specific notation. Most notations include entity types
(classes), relationship types (associations) that are shown either as separate
boxes or simply as directed or undirected lines, cardinality constraints
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shown alongside the lines or in terms of the different types of arrowheads or
min/max constraints, attributes, keys, and so on.!? Some tools display inher-
itance hierarchies and use additional notation for showing the partial-
versus-total and disjoint-versus-overlapping nature of the specialization/
generalization. The diagrams are internally stored as conceptual designs and
are available for modification as well as generation of reports, cross-
reference listings, and other uses.

2. Model mapping. This implements mapping algorithms similar to the ones
we presented in Sections 9.1 and 9.2. The mapping is system-specific—most
tools generate schemas in SQL DDL for Oracle, DB2, Informix, Sybase, and
other RDBMSs. This part of the tool is most amenable to automation. The
designer can further edit the produced DDL files if needed.

3. Design normalization. This utilizes a set of functional dependencies that
are supplied at the conceptual design or after the relational schemas are pro-
duced during logical design. Then, design decomposition algorithms (see
Chapter 16) are applied to decompose existing relations into higher normal-
form relations. Generally, many of these tools lack the approach of generat-
ing alternative 3NF or BCNF designs (described in Chapter 15) and allowing
the designer to select among them based on some criteria like the minimum
number of relations or least amount of storage.

Most tools incorporate some form of physical design including the choice of
indexes. A whole range of separate tools exists for performance monitoring and
measurement. The problem of tuning a design or the database implementation is
still mostly handled as a human decision-making activity. Out of the phases of
design described in this chapter, one area where there is hardly any commercial tool
support is view integration (see Section 10.2.2).

We will not survey database design tools here, but only mention the following char-
acteristics that a good design tool should possess:

1. An easy-to-use interface. This is critical because it enables designers to
focus on the task at hand, not on understanding the tool. Graphical and
point-and-click interfaces are commonly used. A few tools like the SECSI
design tool use natural language input. Different interfaces may be tailored
to beginners or to expert designers.

2. Analytical components. Tools should provide analytical components for
tasks that are difficult to perform manually, such as evaluating physical
design alternatives or detecting conflicting constraints among views. This
area is weak in most current tools.

3. Heuristic components. Aspects of the design that cannot be precisely
quantified can be automated by entering heuristic rules in the design tool to
evaluate design alternatives.

10We showed the ER, EER, and UML class diagram notations in Chapters 7 and 8. See Appendix A for
an idea of the different types of diagrammatic notations used.



10.6 Summary

4. Trade-off analysis. A tool should present the designer with adequate com-
parative analysis whenever it presents multiple alternatives to choose from.
Tools should ideally incorporate an analysis of a design change at the con-
ceptual design level down to physical design. Because of the many alterna-
tives possible for physical design in a given system, such tradeoff analysis is
difficult to carry out and most current tools avoid it.

5. Display of design results. Design results, such as schemas, are often dis-
played in diagrammatic form. Aesthetically pleasing and well laid out dia-
grams are not easy to generate automatically. Multipage design layouts that
are easy to read are another challenge. Other types of results of design may
be shown as tables, lists, or reports that should be easy to interpret.

6. Design verification. This is a highly desirable feature. Its purpose is to ver-
ify that the resulting design satisfies the initial requirements. Unless the
requirements are captured and internally represented in some analyzable
form, the verification cannot be attempted.

Currently there is increasing awareness of the value of design tools, and they are
becoming a must for dealing with large database design problems. There is also an
increasing awareness that schema design and application design should go hand in
hand, and the current trend among CASE tools is to address both areas. The popu-
larity of tools such as Rational Rose is due to the fact that it approaches the two
arms of the design process shown in Figure 10.1 concurrently, approaching database
design and application design as a unified activity. After the acquisition of Rational
by IBM in 2003, the Rational suite of tools have been enhanced as XDE (extended
development environment) tools. Some vendors like Platinum (CA) provide a tool
for data modeling and schema design (ERwin), and another for process modeling
and functional design (BPwin). Other tools (for example, SECSI) use expert system
technology to guide the design process by including design expertise in the form of
rules. Expert system technology is also useful in the requirements collection and
analysis phase, which is typically a laborious and frustrating process. The trend is to
use both meta-data repositories and design tools to achieve better designs for com-
plex databases. Without a claim of being exhaustive, Table 10.1 lists some popular
database design and application modeling tools. Companies in the table are listed
alphabetically.

10.6 Summary

We started this chapter by discussing the role of information systems in organiza-
tions; database systems are looked upon as a part of information systems in large-
scale applications. We discussed how databases fit within an information system for
information resource management in an organization and the life cycle they go
through. Then we discussed the six phases of the design process. The three phases
commonly included as a part of database design are conceptual design, logical
design (data model mapping), and physical design. We also discussed the initial
phase of requirements collection and analysis, which is often considered to be a
predesign phase. Additionally, at some point during the design, a specific DBMS
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Table 10.1  Some of the Currently Available Automated Database Design Tools

Company Tool Functionality

Embarcadero ER/Studio Database modeling in ER and IDEF1x

Technologies DBArtisan Database administration and space and

security management

Oracle Developer 2000 and Database modeling, application
Designer 2000 development

Persistence Inc. PowerTier Mapping from O-O to relational model

Platinum Technology =~ Platinum ModelMart, Data, process, and business component

(Computer Associates) ERwin, BPwin, AllFusion modeling

Popkin Software

Rational (IBM)

Resolution Ltd.
Sybase
Visio

Component Modeler

Telelogic System Architect Data modeling, object modeling, process
modeling, structured analysis/design

Rational Rose Modeling in UML and application
XDE Developer Plus generation in C++ and Java
XCase Conceptual modeling up to code maintenance

Enterprise Application Suite Data modeling, business logic modeling

Visio Enterprise Data modeling, design and reengineering
Visual Basic and Visual C++

package must be chosen. We discussed some of the organizational criteria that come
into play in selecting a DBMS. As performance problems are detected, and as new
applications are added, designs have to be modified. The importance of designing
both the schema and the applications (or transactions) was highlighted. We dis-
cussed different approaches to conceptual schema design and the difference
between centralized schema design and the view integration approach.

We introduced UML diagrams as an aid to the specification of database models and
designs. We presented the entire range of structural and behavioral diagrams and
then we described the notational detail about the following types of diagrams: use
case, sequence, and statechart. (Class diagrams have already been discussed in
Sections 7.8 and 8.6, respectively.) We showed how a few requirements for the UNI-
VERSITY database are specified using these diagrams and can be used to develop
the conceptual design of the database. Only illustrative details and not the complete
specification were supplied. Then we discussed a specific software development
tool—Rational Rose and the Rose Data Modeler—that provides support for the
conceptual design and logical design phases of database design. Rose is a much
broader tool for design of information systems at large. Finally, we briefly discussed
the functionality and desirable features of commercial automated database design
tools that are more focused on database design as opposed to Rose. A tabular sum-
mary of features was presented.
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10.2.

10.3.

10.4.
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10.6.

10.7.
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10.9.
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10.11.

10.12.
10.13.

10.14.

10.15.
10.16.
10.17.
10.18.
10.19.

10.20.
10.21.

What are the six phases of database design? Discuss each phase.

Which of the six phases are considered the main activities of the database
design process itself? Why?

Why is it important to design the schemas and applications in parallel?

Why is it important to use an implementation-independent data model dur-
ing conceptual schema design? What models are used in current design
tools? Why?

Discuss the importance of requirements collection and analysis.

Consider an actual application of a database system of interest. Define the
requirements of the different levels of users in terms of data needed, types of
queries, and transactions to be processed.

Discuss the characteristics that a data model for conceptual schema design
should possess.

Compare and contrast the two main approaches to conceptual schema
design.

Discuss the strategies for designing a single conceptual schema from its
requirements.

What are the steps of the view integration approach to conceptual schema
design? What are the difficulties during each step?

How would a view integration tool work? Design a sample modular architec-
ture for such a tool.

What are the different strategies for view integration?

Discuss the factors that influence the choice of a DBMS package for the
information system of an organization.

What is system-independent data model mapping? How is it different from
system-dependent data model mapping?

What are the important factors that influence physical database design?
Discuss the decisions made during physical database design.

Discuss the macro and micro life cycles of an information system.
Discuss the guidelines for physical database design in RDBMSs.

Discuss the types of modifications that may be applied to the logical data-
base design of a relational database.

What functions do the typical database design tools provide?

What type of functionality would be desirable in automated tools to support
optimal design of large databases?
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10.22. What are the current relational DBMSs that dominate the market? Choose
one that you are familiar with and show how it measures up based on the cri-
teria laid out in Section 10.2.3?

10.23. A possible DDL corresponding to Figure 3.1 follows:
CREATE TABLE STUDENT (

Name VARCHAR(30) NOT NULL,
Ssn CHAR(9) PRIMARY KEY,
Home_phone VARCHAR(14),

Address VARCHAR(40),

Office_phone VARCHAR(14),

Age INT,

Gpa DECIMAL(4,3)

)i
Discuss the following detailed design decisions:

a. The choice of requiring Name to be NON NULL

b. Selection of Ssn as the PRIMARY KEY

c. Choice of field sizes and precision

d. Any modification of the fields defined in this database
e. Any constraints on individual fields

10.24. What naming conventions can you develop to help identify foreign keys
more efficiently?

10.25. What functions do the typical database design tools provide?

Selected Bibliography

There is a vast amount of literature on database design. First we list some of the
books that address database design. Batini et al. (1992) is a comprehensive treat-
ment of conceptual and logical database design. Wiederhold (1987) covers all
phases of database design, with an emphasis on physical design. O’Neil (1994) has a
detailed discussion of physical design and transaction issues in reference to com-
mercial RDBMSs. A large body of work on conceptual modeling and design was
done in the 1980s. Brodie et al. (1984) gives a collection of chapters on conceptual
modeling, constraint specification and analysis, and transaction design. Yao (1985)
is a collection of works ranging from requirements specification techniques to
schema restructuring. Teorey (1998) emphasizes EER modeling and discusses vari-
ous aspects of conceptual and logical database design. Hoffer et al. (2009) is a good
introduction to the business applications issues of database management.

Navathe and Kerschberg (1986) discuss all phases of database design and point out
the role of data dictionaries. Goldfine and Konig (1988) and ANSI (1989) discuss
the role of data dictionaries in database design. Rozen and Shasha (1991) and Carlis
and March (1984) present different models for the problem of physical database
design. Object-oriented analysis and design is discussed in Schlaer and Mellor
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(1988), Rumbaugh et al. (1991), Martin and Odell (1991), and Jacobson et al.
(1992). Recent books by Blaha and Rumbaugh (2005) and Martin and Odell (2008)
consolidate the existing techniques in object-oriented analysis and design using
UML. Fowler and Scott (2000) is a quick introduction to UML. For a comprehen-
sive treatment of UML and its use in the software development process, consult
Jacobson et al. (1999) and Rumbaugh et al. (1999).

Requirements collection and analysis is a heavily researched topic. Chatzoglu et al.
(1997) and Lubars et al. (1993) present surveys of current practices in requirements
capture, modeling, and analysis. Carroll (1995) provides a set of readings on the use
of scenarios for requirements gathering in early stages of system development.
Wood and Silver (1989) gives a good overview of the official Joint Application
Design (JAD) process. Potter et al. (1991) describes the Z-notation and methodol-
ogy for formal specification of software. Zave (1997) has classified the research
efforts in requirements engineering.

A large body of work has been produced on the problems of schema and view inte-
gration, which is becoming particularly relevant now because of the need to inte-
grate a variety of existing databases. Navathe and Gadgil (1982) defined approaches
to view integration. Schema integration methodologies are compared in Batini et al.
(1987). Detailed work on n-ary view integration can be found in Navathe et al.
(1986), Elmasri et al. (1986), and Larson et al. (1989). An integration tool based on
Elmasri et al. (1986) is described in Sheth et al. (1988). Another view integration
system is discussed in Hayne and Ram (1990). Casanova et al. (1991) describes a
tool for modular database design. Motro (1987) discusses integration with respect
to preexisting databases. The binary balanced strategy to view integration is dis-
cussed in Teorey and Fry (1982). A formal approach to view integration, which uses
inclusion dependencies, is given in Casanova and Vidal (1982). Ramesh and Ram
(1997) describe a methodology for integration of relationships in schemas utilizing
the knowledge of integrity constraints; this extends the previous work of Navathe et
al. (1984a). Sheth at al. (1993) describe the issues of building global schemas by rea-
soning about attribute relationships and entity equivalences. Navathe and Savasere
(1996) describe a practical approach to building global schemas based on operators
applied to schema components. Santucci (1998) provides a detailed treatment of
refinement of EER schemas for integration. Castano et al. (1998) present a compre-
hensive survey of conceptual schema analysis techniques.

Transaction design is a relatively less thoroughly researched topic. Mylopoulos et al.
(1980) proposed the TAXIS language, and Albano et al. (1985) developed the
GALILEO system, both of which are comprehensive systems for specifying transac-
tions. The GORDAS language for the ECR model (Elmasri et al. 1985) contains a
transaction specification capability. Navathe and Balaraman (1991) and Ngu (1989)
discuss transaction modeling in general for semantic data models. Elmagarmid
(1992) discusses transaction models for advanced applications. Batini et al. (1992,
Chapters 8, 9, and 11) discuss high-level transaction design and joint analysis of
data and functions. Shasha (1992) is an excellent source on database tuning.
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Information about some well-known commercial database design tools can be
found at the Websites of the vendors (see company names in Table 10.1). Principles
behind automated design tools are discussed in Batini et al. (1992, Chapter 15). The
SECSI tool is described in Metais et al. (1998). DKE (1997) is a special issue on nat-
ural language issues in databases.
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chapter

Object and Object-Relational
Databases

n this chapter, we discuss the features of object-

oriented data models and show how some of these
features have been incorporated in relational database systems. Object-oriented
databases are now referred to as object databases (ODB) (previously called
OODB), and the database systems are referred to as object data management sys-
tems (ODMS) (formerly referred to as ODBMS or OODBMS). Traditional data
models and systems, such as relational, network, and hierarchical, have been quite
successful in developing the database technologies required for many traditional
business database applications. However, they have certain shortcomings when
more complex database applications must be designed and implemented—for
example, databases for engineering design and manufacturing (CAD/CAM and
CIM!), scientific experiments, teleccommunications, geographic information sys-
tems, and multimedia.? These newer applications have requirements and character-
istics that differ from those of traditional business applications, such as more
complex structures for stored objects; the need for new data types for storing
images, videos, or large textual items; longer-duration transactions; and the need to
define nonstandard application-specific operations. Object databases were pro-
posed to meet some of the needs of these more complex applications. A key feature
of object databases is the power they give the designer to specify both the structure
of complex objects and the operations that can be applied to these objects.

Computer-aided design/computer-aided manufacturing and computer-integrated manufacturing.

2Multimedia databases must store various types of multimedia objects, such as video, audio, images,
graphics, and documents (see Chapter 26).
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Another reason for the creation of object-oriented databases is the vast increase in
the use of object-oriented programming languages for developing software applica-
tions. Databases are fundamental components in many software systems, and tradi-
tional databases are sometimes difficult to use with software applications that are
developed in an object-oriented programming language such as C++ or Java.
Object databases are designed so they can be directly—or seamlessly—integrated
with software that is developed using object-oriented programming languages.

Relational DBMS (RDBMS) vendors have also recognized the need for incorporat-
ing features that were proposed for object databases, and newer versions of rela-
tional systems have incorporated many of these features. This has led to database
systems that are characterized as object-relational or ORDBMSs. The latest version
of the SQL standard (2008) for RDBMSs includes many of these features, which
were originally known as SQL/Object and they have now been merged into the
main SQL specification, known as SQL/Foundation.

Although many experimental prototypes and commercial object-oriented database
systems have been created, they have not found widespread use because of the pop-
ularity of relational and object-relational systems. The experimental prototypes
included the Orion system developed at MCC,> OpenOODB at Texas Instruments,
the Iris system at Hewlett-Packard laboratories, the Ode system at AT&T Bell Labs,*
and the ENCORE/ObServer project at Brown University. Commercially available
systems included GemStone Object Server of GemStone Systems, ONTOS DB of
Ontos, Objectivity/DB of Objectivity Inc., Versant Object Database and FastObjects
by Versant Corporation (and Poet), ObjectStore of Object Design, and Ardent
Database of Ardent.”> These represent only a partial list of the experimental proto-
types and commercial object-oriented database systems that were created.

As commercial object DBMSs became available, the need for a standard model and
language was recognized. Because the formal procedure for approval of standards
normally takes a number of years, a consortium of object DBMS vendors and users,
called ODMG,® proposed a standard whose current specification is known as the
ODMG 3.0 standard.

Object-oriented databases have adopted many of the concepts that were developed
originally for object-oriented programming languages.” In Section 11.1, we describe
the key concepts utilized in many object database systems and that were later incor-
porated into object-relational systems and the SQL standard. These include object
identity, object structure and type constructors, encapsulation of operations and the
definition of methods as part of class declarations, mechanisms for storing objects in

SMicroelectronics and Computer Technology Corporation, Austin, Texas.
“Now called Lucent Technologies.

SFormerly 02 of 02 Technology.

60bject Data Management Group.

7Similar concepts were also developed in the fields of semantic data modeling and knowledge represen-
tation.
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a database by making them persistent, and type and class hierarchies and inheritance.
Then, in Section 11.2 we see how these concepts have been incorporated into the
latest SQL standards, leading to object-relational databases. Object features were
originally introduced in SQL:1999, and then updated in the latest version
(SQL:2008) of the standard. In Section 11.3, we turn our attention to “pure” object
database standards by presenting features of the object database standard ODMG
3.0 and the object definition language ODL. Section 11.4 presents an overview of
the database design process for object databases. Section 11.5 discusses the object
query language (OQL), which is part of the ODMG 3.0 standard. In Section 11.6,
we discuss programming language bindings, which specify how to extend object-
oriented programming languages to include the features of the object database
standard. Section 11.7 summarizes the chapter. Sections 11.5 and 11.6 may be left
out if a less thorough introduction to object databases is desired.

11.1 Overview of Object Database Concepts

11.1.1 Introduction to Object-Oriented Concepts and Features

The term object-oriented—abbreviated OO or O-O—has its origins in OO pro-
gramming languages, or OOPLs. Today OO concepts are applied in the areas of
databases, software engineering, knowledge bases, artificial intelligence, and com-
puter systems in general. OOPLs have their roots in the SIMULA language, which
was proposed in the late 1960s. The programming language Smalltalk, developed at
Xerox PARC? in the 1970s, was one of the first languages to explicitly incorporate
additional OO concepts, such as message passing and inheritance. It is known as a
pure OO programming language, meaning that it was explicitly designed to be
object-oriented. This contrasts with hybrid OO programming languages, which
incorporate OO concepts into an already existing language. An example of the latter
is C++, which incorporates OO concepts into the popular C programming
language.

An object typically has two components: state (value) and behavior (operations). It
can have a complex data structure as well as specific operations defined by the pro-
grammer.” Objects in an OOPL exist only during program execution; therefore,
they are called transient objects. An OO database can extend the existence of objects
so that they are stored permanently in a database, and hence the objects become
persistent objects that exist beyond program termination and can be retrieved later
and shared by other programs. In other words, OO databases store persistent
objects permanently in secondary storage, and allow the sharing of these objects
among multiple programs and applications. This requires the incorporation of
other well-known features of database management systems, such as indexing
mechanisms to efficiently locate the objects, concurrency control to allow object

8Palo Alto Research Center, Palo Alto, California.

9Objec’[s have many other characteristics, as we discuss in the rest of this chapter.

355



356

Chapter 11 Object and Object-Relational Databases

sharing among concurrent programs, and recovery from failures. An OO database
system will typically interface with one or more OO programming languages to
provide persistent and shared object capabilities.

The internal structure of an object in OOPLs includes the specification of instance
variables, which hold the values that define the internal state of the object. An
instance variable is similar to the concept of an attribute in the relational model,
except that instance variables may be encapsulated within the object and thus are
not necessarily visible to external users. Instance variables may also be of arbitrarily
complex data types. Object-oriented systems allow definition of the operations or
functions (behavior) that can be applied to objects of a particular type. In fact, some
OO models insist that all operations a user can apply to an object must be prede-
fined. This forces a complete encapsulation of objects. This rigid approach has been
relaxed in most OO data models for two reasons. First, database users often need to
know the attribute names so they can specify selection conditions on the attributes
to retrieve specific objects. Second, complete encapsulation implies that any simple
retrieval requires a predefined operation, thus making ad hoc queries difficult to
specify on the fly.

To encourage encapsulation, an operation is defined in two parts. The first part,
called the signature or interface of the operation, specifies the operation name and
arguments (or parameters). The second part, called the method or body, specifies the
implementation of the operation, usually written in some general-purpose pro-
gramming language. Operations can be invoked by passing a message to an object,
which includes the operation name and the parameters. The object then executes
the method for that operation. This encapsulation permits modification of the
internal structure of an object, as well as the implementation of its operations, with-
out the need to disturb the external programs that invoke these operations. Hence,
encapsulation provides a form of data and operation independence (see Chapter 2).

Another key concept in OO systems is that of type and class hierarchies and
inheritance. This permits specification of new types or classes that inherit much of
their structure and/or operations from previously defined types or classes. This
makes it easier to develop the data types of a system incrementally, and to reuse
existing type definitions when creating new types of objects.

One problem in early OO database systems involved representing relationships
among objects. The insistence on complete encapsulation in early OO data models
led to the argument that relationships should not be explicitly represented, but
should instead be described by defining appropriate methods that locate related
objects. However, this approach does not work very well for complex databases with
many relationships because it is useful to identify these relationships and make
them visible to users. The ODMG object database standard has recognized this need
and it explicitly represents binary relationships via a pair of inverse references, as we
will describe in Section 11.3.

Another OO concept is operator overloading, which refers to an operation’s ability to
be applied to different types of objects; in such a situation, an operation name may
refer to several distinct implementations, depending on the type of object it is
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applied to. This feature is also called operator polymorphism. For example, an opera-
tion to calculate the area of a geometric object may differ in its method (implemen-
tation), depending on whether the object is of type triangle, circle, or rectangle. This
may require the use of late binding of the operation name to the appropriate
method at runtime, when the type of object to which the operation is applied
becomes known.

In the next several sections, we discuss in some detail the main characteristics of
object databases. Section 11.1.2 discusses object identity; Section 11.1.3 shows how
the types for complex-structured objects are specified via type constructors; Section
11.1.4 discusses encapsulation and persistence; and Section 11.1.5 presents inheri-
tance concepts. Section 11.1.6 discusses some additional OO concepts, and Section
11.1.7 gives a summary of all the OO concepts that we introduced. In Section 11.2,
we show how some of these concepts have been incorporated into the SQL:2008
standard for relational databases. Then in Section 11.3, we show how these concepts
are realized in the ODMG 3.0 object database standard.

11.1.2 Object Identity, and Objects versus Literals

One goal of an ODMS (Object Data Management System) is to maintain a direct
correspondence between real-world and database objects so that objects do not lose
their integrity and identity and can easily be identified and operated upon. Hence,
an ODMS provides a unique identity to each independent object stored in the data-
base. This unique identity is typically implemented via a unique, system-generated
object identifier (OID). The value of an OID is not visible to the external user, but
is used internally by the system to identify each object uniquely and to create and
manage inter-object references. The OID can be assigned to program variables of
the appropriate type when needed.

The main property required of an OID is that it be immutable; that is, the OID
value of a particular object should not change. This preserves the identity of the
real-world object being represented. Hence, an ODMS must have some mechanism
for generating OIDs and preserving the immutability property. It is also desirable
that each OID be used only once; that is, even if an object is removed from the data-
base, its OID should not be assigned to another object. These two properties imply
that the OID should not depend on any attribute values of the object, since the
value of an attribute may be changed or corrected. We can compare this with the
relational model, where each relation must have a primary key attribute whose
value identifies each tuple uniquely. In the relational model, if the value of the pri-
mary key is changed, the tuple will have a new identity, even though it may still rep-
resent the same real-world object. Alternatively, a real-world object may have
different names for key attributes in different relations, making it difficult to ascer-
tain that the keys represent the same real-world object (for example, the object
identifier may be represented as Emp_id in one relation and as Ssn in another).

It is inappropriate to base the OID on the physical address of the object in storage,
since the physical address can change after a physical reorganization of the database.
However, some early ODMSs have used the physical address as the OID to increase
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the efficiency of object retrieval. If the physical address of the object changes, an
indirect pointer can be placed at the former address, which gives the new physical
location of the object. It is more common to use long integers as OIDs and then to
use some form of hash table to map the OID value to the current physical address of
the object in storage.

Some early OO data models required that everything—from a simple value to a
complex object—was represented as an object; hence, every basic value, such as an
integer, string, or Boolean value, has an OID. This allows two identical basic values
to have different OIDs, which can be useful in some cases. For example, the integer
value 50 can sometimes be used to mean a weight in kilograms and at other times to
mean the age of a person. Then, two basic objects with distinct OIDs could be cre-
ated, but both objects would represent the integer value 50. Although useful as a
theoretical model, this is not very practical, since it leads to the generation of too
many OIDs. Hence, most OO database systems allow for the representation of both
objects and literals (or values). Every object must have an immutable OID, whereas
a literal value has no OID and its value just stands for itself. Thus, a literal value is
typically stored within an object and cannot be referenced from other objects. In
many systems, complex structured literal values can also be created without having
a corresponding OID if needed.

11.1.3 Complex Type Structures for Objects and Literals

Another feature of an ODMS (and ODBs in general) is that objects and literals may
have a type structure of arbitrary complexity in order to contain all of the necessary
information that describes the object or literal. In contrast, in traditional database
systems, information about a complex object is often scattered over many relations
or records, leading to loss of direct correspondence between a real-world object and
its database representation. In ODBs, a complex type may be constructed from
other types by nesting of type constructors. The three most basic constructors are
atom, struct (or tuple), and collection.

1. One type constructor has been called the atom constructor, although this
term is not used in the latest object standard. This includes the basic built-in
data types of the object model, which are similar to the basic types in many
programming languages: integers, strings, floating point numbers, enumer-
ated types, Booleans, and so on. They are called single-valued or atomic
types, since each value of the type is considered an atomic (indivisible) sin-
gle value.

2. A second type constructor is referred to as the struct (or tuple) constructor.
This can create standard structured types, such as the tuples (record types)
in the basic relational model. A structured type is made up of several compo-
nents, and is also sometimes referred to as a compound or composite type.
More accurately, the struct constructor is not considered to be a type, but
rather a type generator, because many different structured types can be cre-
ated. For example, two different structured types that can be created are:
struct Name<FirstName: string, Middlelnitial: char, LastName: string>, and
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struct CollegeDegree<Major: string, Degree: string, Year: date>. To create
complex nested type structures in the object model, the collection type con-
structors are needed, which we discuss next. Notice that the type construc-
tors atom and struct are the only ones available in the original (basic)
relational model.

3. Collection (or multivalued) type constructors include the set(T), list(T),
bag(T), array(T), and dictionary(K,T) type constructors. These allow part
of an object or literal value to include a collection of other objects or values
when needed. These constructors are also considered to be type generators
because many different types can be created. For example, set(string),
set(integer), and set(Employee) are three different types that can be created
from the sef type constructor. All the elements in a particular collection value
must be of the same type. For example, all values in a collection of type
set(string) must be string values.

The atom constructor is used to represent all basic atomic values, such as integers,
real numbers, character strings, Booleans, and any other basic data types that the
system supports directly. The tuple constructor can create structured values and
objects of the form <a:i}, a :i,, ..., a,:i,>, where each a; is an attribute name!? and
each ij is a value or an OID.

The other commonly used constructors are collectively referred to as collection
types, but have individual differences among them. The set constructor will create
objects or literals that are a set of distinct elements {i,, 1,, ..., 1 n}, all of the same type.
The bag constructor (sometimes called a multiset) is similar to a set except that the
elements in a bag need not be distinct. The list constructor will create an ordered list
[i}> i ...» i,,] of OIDs or values of the same type. A list is similar to a bag except that
the elements in a list are ordered, and hence we can refer to the first, second, or jth
element. The array constructor creates a single-dimensional array of elements of
the same type. The main difference between array and list is that a list can have an
arbitrary number of elements whereas an array typically has a maximum size.
Finally, the dictionary constructor creates a collection of two tuples (K, V), where
the value of a key K can be used to retrieve the corresponding value V.

The main characteristic of a collection type is that its objects or values will be a
collection of objects or values of the same type that may be unordered (such as a set or
a bag) or ordered (such as a list or an array). The tuple type constructor is often
called a structured type, since it corresponds to the struct construct in the C and
C++ programming languages.

An object definition language (ODL)!! that incorporates the preceding type con-
structors can be used to define the object types for a particular database application.
In Section 11.3 we will describe the standard ODL of ODMG, but first we introduce

10AIso called an instance variable name in OO terminology.

"This corresponds to the DDL (data definition language) of the database system (see Chapter 2).
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the concepts gradually in this section using a simpler notation. The type construc-
tors can be used to define the data structures for an OO database schema. Figure 11.1
shows how we may declare EMPLOYEE and DEPARTMENT types.

In Figure 11.1, the attributes that refer to other objects—such as Dept of EMPLOYEE
or Projects of DEPARTMENT—are basically OIDs that serve as references to other
objects to represent relationships among the objects. For example, the attribute Dept
of EMPLOYEE is of type DEPARTMENT, and hence is used to refer to a specific
DEPARTMENT object (the DEPARTMENT object where the employee works). The
value of such an attribute would be an OID for a specific DEPARTMENT object. A
binary relationship can be represented in one direction, or it can have an inverse ref-
erence. The latter representation makes it easy to traverse the relationship in both
directions. For example, in Figure 11.1 the attribute Employees of DEPARTMENT has
as its value a set of references (that is, a set of OIDs) to objects of type EMPLOYEE;
these are the employees who work for the DEPARTMENT. The inverse is the reference
attribute Dept of EMPLOYEE. We will see in Section 11.3 how the ODMG standard
allows inverses to be explicitly declared as relationship attributes to ensure that
inverse references are consistent.

Figure 11.1
Specifying the object
types EMPLOYEE,
DATE, and
DEPARTMENT using
type constructors.

define type EMPLOYEE

tuple ( Fname: string;
Minit: char;
Lname: string;
Ssn: string;
Birth_date: DATE;
Address: string;
Sex: char;
Salary: float;
Supervisor: EMPLOYEE;
Dept: DEPARTMENT;

define type DATE

tuple ( Year: integer;
Month: integer;
Day: integer; );

define type DEPARTMENT

tuple ( Dname: string;
Dnumber: integer;
Mgr: tuple ( Manager: EMPLOYEE;
Start_date: DATE; );
Locations:  set(string);
Employees: set(EMPLOYEE);

Projects: set(PROJECT); );
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11.1.4 Encapsulation of Operations
and Persistence of Objects

Encapsulation of Operations. The concept of encapsulation is one of the main
characteristics of OO languages and systems. It is also related to the concepts of
abstract data types and information hiding in programming languages. In traditional
database models and systems this concept was not applied, since it is customary to
make the structure of database objects visible to users and external programs. In
these traditional models, a number of generic database operations are applicable to
objects of all types. For example, in the relational model, the operations for selecting,
inserting, deleting, and modifying tuples are generic and may be applied to any rela-
tion in the database. The relation and its attributes are visible to users and to exter-
nal programs that access the relation by using these operations. The concepts of
encapsulation is applied to database objects in ODBs by defining the behavior of a
type of object based on the operations that can be externally applied to objects of
that type. Some operations may be used to create (insert) or destroy (delete)
objects; other operations may update the object state; and others may be used to
retrieve parts of the object state or to apply some calculations. Still other operations
may perform a combination of retrieval, calculation, and update. In general, the
implementation of an operation can be specified in a general-purpose programming
language that provides flexibility and power in defining the operations.

The external users of the object are only made aware of the interface of the opera-
tions, which defines the name and arguments (parameters) of each operation. The
implementation is hidden from the external users; it includes the definition of any
hidden internal data structures of the object and the implementation of the opera-
tions that access these structures. The interface part of an operation is sometimes
called the signature, and the operation implementation is sometimes called the
method.

For database applications, the requirement that all objects be completely encapsu-
lated is too stringent. One way to relax this requirement is to divide the structure of
an object into visible and hidden attributes (instance variables). Visible attributes
can be seen by and are directly accessible to the database users and programmers via
the query language. The hidden attributes of an object are completely encapsulated
and can be accessed only through predefined operations. Most ODMSs employ
high-level query languages for accessing visible attributes. In Section 11.5 we will
describe the OQL query language that is proposed as a standard query language for
ODBs.

The term class is often used to refer to a type definition, along with the definitions of
the operations for that type.!? Figure 11.2 shows how the type definitions in Figure
11.1 can be extended with operations to define classes. A number of operations are

12This definition of class is similar to how it is used in the popular C++ programming language. The
ODMG standard uses the word interface in addition to class (see Section 11.3). In the EER model, the
term class was used to refer to an object type, along with the set of all objects of that type (see
Chapter 8).
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Figure 11.2

Adding operations to
the definitions of
EMPLOYEE and
DEPARTMENT.

Chapter 11 Object and Object-Relational Databases

define class EMPLOYEE

type tuple ( Fname: string;
Minit: char;
Lname: string;
Ssn: string;
Birth_date: DATE;
Address: string;
Sex: char;
Salary: float;
Supervisor: EMPLOYEE;
Dept: DEPARTMENT; );

operations age: integer;
create_emp: EMPLOYEE;
destroy_emp: boolean;

end EMPLOYEE;
define class DEPARTMENT

type tuple ( Dname: string;
Dnumber: integer;
Mgr: tuple ( Manager: EMPLOYEE;

Start_date: DATE; );

Locations: set (string);
Employees: set (EMPLOYEE);
Projects set(PROJECT); );

operations no_of_emps: integer;
create_dept: DEPARTMENT;
destroy_dept: boolean;

assign_emp(e:  EMPLOYEE): boolean;

(* adds an employee to the department *)

remove_emp(e: EMPLOYEE): boolean;

(* removes an employee from the department *)
end DEPARTMENT;

declared for each class, and the signature (interface) of each operation is included in
the class definition. A method (implementation) for each operation must be defined
elsewhere using a programming language. Typical operations include the object con-
structor operation (often called new), which is used to create a new object, and the
destructor operation, which is used to destroy (delete) an object. A number of object
modifier operations can also be declared to modify the states (values) of various
attributes of an object. Additional operations can retrieve information about the
object.

An operation is typically applied to an object by using the dot notation. For exam-
ple, if d is a reference to a DEPARTMENT object, we can invoke an operation such as
no_of_emps by writing d.no_of_emps. Similarly, by writing d.destroy_dept, the object
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referenced by d is destroyed (deleted). The only exception is the constructor opera-
tion, which returns a reference to a new DEPARTMENT object. Hence, it is customary
in some OO models to have a default name for the constructor operation that is the
name of the class itself, although this was not used in Figure 11.2.13 The dot nota-
tion is also used to refer to attributes of an object—for example, by writing
d.Dnumber or d.Mgr_Start_date.

Specifying Object Persistence via Naming and Reachability. An ODBS is
often closely coupled with an object-oriented programming language (OOPL). The
OOPL is used to specify the method (operation) implementations as well as other
application code. Not all objects are meant to be stored permanently in the data-
base. Transient objects exist in the executing program and disappear once the pro-
gram terminates. Persistent objects are stored in the database and persist after
program termination. The typical mechanisms for making an object persistent are
naming and reachability.

The naming mechanism involves giving an object a unique persistent name within
a particular database. This persistent object name can be given via a specific state-
ment or operation in the program, as shown in Figure 11.3. The named persistent
objects are used as entry points to the database through which users and applica-
tions can start their database access. Obviously, it is not practical to give names to all
objects in a large database that includes thousands of objects, so most objects are
made persistent by using the second mechanism, called reachability. The reachabil-
ity mechanism works by making the object reachable from some other persistent
object. An object B is said to be reachable from an object A if a sequence of refer-
ences in the database lead from object A to object B.

If we first create a named persistent object N, whose state is a set (or possibly a bag)
of objects of some class C, we can make objects of C persistent by adding them to the
set, thus making them reachable from N. Hence, N is a named object that defines a
persistent collection of objects of class C. In the object model standard, N is called
the extent of C (see Section 11.3).

For example, we can define a class DEPARTMENT_SET (see Figure 11.3) whose
objects are of type set(DEPARTMENT).!* We can create an object of type
DEPARTMENT_SET, and give it a persistent name ALL_DEPARTMENTS, as shown in
Figure 11.3. Any DEPARTMENT object that is added to the set of ALL_DEPARTMENTS
by using the add_dept operation becomes persistent by virtue of its being reachable
from ALL_DEPARTMENTS. As we will see in Section 11.3, the ODMG ODL standard
gives the schema designer the option of naming an extent as part of class definition.

Notice the difference between traditional database models and ODBs in this respect.

13Default names for the constructor and destructor operations exist in the C++ programming language.
For example, for class EMPLOYEE, the default constructor name is EMPLOYEE and the default destruc-
tor name is ~EMPLOYEE. It is also common to use the new operation to create new objects.

14As we will see in Section 11.3, the ODMG ODL syntax uses set<DEPARTMENT> instead of
set(DEPARTMENT).
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Figure 11.3
Creating persistent
objects by naming
and reachability.

define class DEPARTMENT_SET
type set (DEPARTMENT);
operations add_dept(d: DEPARTMENT): boolean;

(* adds a department to the DEPARTMENT_SET object *)
remove_dept(d: DEPARTMENT): boolean;

(* removes a department from the DEPARTMENT_SET object *)
create_dept_set: DEPARTMENT_SET;
destroy_dept_set: boolean;

end DEPARTMENT_SET;

persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;
(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)

d:= create_dept;
(* create a new DEPARTMENT object in the variable d *)

b:= ALL_DEPARTMENTS.add_dept(d);
(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

In traditional database models, such as the relational model, all objects are assumed
to be persistent. Hence, when a table such as EMPLOYEE is created in a relational
database, it represents both the type declaration for EMPLOYEE and a persistent set of
all EMPLOYEE records (tuples). In the OO approach, a class declaration of
EMPLOYEE specifies only the type and operations for a class of objects. The user
must separately define a persistent object of type set(EMPLOYEE) or
bag(EMPLOYEE) whose value is the collection of references (OIDs) to all persistent
EMPLOYEE objects, if this is desired, as shown in Figure 11.3.15 This allows transient
and persistent objects to follow the same type and class declarations of the ODL and
the OOPL. In general, it is possible to define several persistent collections for the
same class definition, if desired.

11.1.5 Type Hierarchies and Inheritance

Simplified Model for Inheritance. Another main characteristic of ODBs is that
they allow type hierarchies and inheritance. We use a simple OO model in this sec-
tion—a model in which attributes and operations are treated uniformly—since
both attributes and operations can be inherited. In Section 11.3, we will discuss the
inheritance model of the ODMG standard, which differs from the model discussed
here because it distinguishes between two types of inheritance. Inheritance allows the
definition of new types based on other predefined types, leading to a type (or class)
hierarchy.

15Some systems, such as POET, automatically create the extent for a class.
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A type is defined by assigning it a type name, and then defining a number of attrib-
utes (instance variables) and operations (methods) for the type.'® In the simplified
model we use in this section, the attributes and operations are together called
functions, since attributes resemble functions with zero arguments. A function
name can be used to refer to the value of an attribute or to refer to the resulting
value of an operation (method). We use the term function to refer to both attrib-
utes and operations, since they are treated similarly in a basic introduction to inher-
itance.!”

A type in its simplest form has a type name and a list of visible (public) functions.
When specifying a type in this section, we use the following format, which does not
specify arguments of functions, to simplify the discussion:

TYPE_NAME: function, function, ..., function

For example, a type that describes characteristics of a PERSON may be defined as
follows:

PERSON: Name, Address, Birth_date, Age, Ssn

In the PERSON type, the Name, Address, Ssn, and Birth_date functions can be imple-
mented as stored attributes, whereas the Age function can be implemented as an
operation that calculates the Age from the value of the Birth_date attribute and the
current date.

The concept of subtype is useful when the designer or user must create a new type
that is similar but not identical to an already defined type. The subtype then inher-
its all the functions of the predefined type, which is referred to as the supertype. For
example, suppose that we want to define two new types EMPLOYEE and STUDENT
as follows:

EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, Seniority
STUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa

Since both STUDENT and EMPLOYEE include all the functions defined for PERSON
plus some additional functions of their own, we can declare them to be subtypes of
PERSON. Each will inherit the previously defined functions of PERSON—namely,
Name, Address, Birth_date, Age, and Ssn. For STUDENT, it is only necessary to define
the new (local) functions Major and Gpa, which are not inherited. Presumably, Major
can be defined as a stored attribute, whereas Gpa may be implemented as an opera-
tion that calculates the student’s grade point average by accessing the Grade values
that are internally stored (hidden) within each STUDENT object as hidden attributes.
For EMPLOYEE, the Salary and Hire_date functions may be stored attributes, whereas
Seniority may be an operation that calculates Seniority from the value of Hire_date.

161 this section we will use the terms type and class as meaning the same thing—namely, the attributes
and operations of some type of object.

17We will see in Section 11.3 that types with functions are similar to the concept of interfaces as used in
ODMG ODL.
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Therefore, we can declare EMPLOYEE and STUDENT as follows:

EMPLOYEE subtype-of PERSON: Salary, Hire_date, Seniority
STUDENT subtype-of PERSON: Major, Gpa

In general, a subtype includes all of the functions that are defined for its supertype
plus some additional functions that are specific only to the subtype. Hence, it is pos-
sible to generate a type hierarchy to show the supertype/subtype relationships
among all the types declared in the system.

As another example, consider a type that describes objects in plane geometry, which
may be defined as follows:

GEOMETRY_OBIJECT: Shape, Area, Reference_point

For the GEOMETRY_OBIJECT type, Shape is implemented as an attribute (its
domain can be an enumerated type with values ‘triangle’, ‘rectangle’, ‘circle’, and so
on), and Area is a method that is applied to calculate the area. Reference_point speci-
fies the coordinates of a point that determines the object location. Now suppose
that we want to define a number of subtypes for the GEOMETRY_OBJECT type, as
follows:

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height
TRIANGLE S subtype-of GEOMETRY_OBIJECT: Side1, Side2, Angle
CIRCLE subtype-of GEOMETRY_OBJECT: Radius

Notice that the Area operation may be implemented by a different method for each
subtype, since the procedure for area calculation is different for rectangles, triangles,
and circles. Similarly, the attribute Reference_point may have a different meaning for
each subtype; it might be the center point for RECTANGLE and CIRCLE objects, and
the vertex point between the two given sides for a TRIANGLE object.

Notice that type definitions describe objects but do not generate objects on their
own. When an object is created, typically it belongs to one or more of these types
that have been declared. For example, a circle object is of type CIRCLE and
GEOMETRY_OBJECT (by inheritance). Each object also becomes a member of one
or more persistent collections of objects (or extents), which are used to group
together collections of objects that are persistently stored in the database.

Constraints on Extents Corresponding to a Type Hierarchy. In most ODBs,
an extent is defined to store the collection of persistent objects for each type or sub-
type. In this case, the constraint is that every object in an extent that corresponds to
a subtype must also be a member of the extent that corresponds to its supertype.
Some OO database systems have a predefined system type (called the ROOT class or
the OBJECT class) whose extent contains all the objects in the system.!8

Classification then proceeds by assigning objects into additional subtypes that are
meaningful to the application, creating a type hierarchy (or class hierarchy) for the
system. All extents for system- and user-defined classes are subsets of the extent cor-

18This is called OBJECT in the ODMG model (see Section 11.3).
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responding to the class OBJECT, directly or indirectly. In the ODMG model (see
Section 11.3), the user may or may not specify an extent for each class (type),
depending on the application.

An extent is a named persistent object whose value is a persistent collection that
holds a collection of objects of the same type that are stored permanently in the
database. The objects can be accessed and shared by multiple programs. It is also
possible to create a transient collection, which exists temporarily during the execu-
tion of a program but is not kept when the program terminates. For example, a
transient collection may be created in a program to hold the result of a query that
selects some objects from a persistent collection and copies those objects into the
transient collection. The program can then manipulate the objects in the transient
collection, and once the program terminates, the transient collection ceases to exist.
In general, numerous collections—transient or persistent—may contain objects of
the same type.

The inheritance model discussed in this section is very simple. As we will see in
Section 11.3, the ODMG model distinguishes between type inheritance—called
interface inheritance and denoted by a colon (:)—and the extent inheritance con-
straint—denoted by the keyword EXTEND.

11.1.6 Other Object-Oriented Concepts

Polymorphism of Operations (Operator Overloading). Another characteris-
tic of OO systems in general is that they provide for polymorphism of operations,
which is also known as operator overloading. This concept allows the same
operator name or symbol to be bound to two or more different implementations of
the operator, depending on the type of objects to which the operator is applied. A
simple example from programming languages can illustrate this concept. In some
languages, the operator symbol “+” can mean different things when applied to
operands (objects) of different types. If the operands of “+” are of type integer, the
operation invoked is integer addition. If the operands of “+” are of type floating
point, the operation invoked is floating point addition. If the operands of “+” are of
type set, the operation invoked is set union. The compiler can determine which
operation to execute based on the types of operands supplied.

In OO databases, a similar situation may occur. We can use the
GEOMETRY_OBIJECT example presented in Section 11.1.5 to illustrate operation
polymorphism!® in ODB.

In this example, the function Area is declared for all objects of type
GEOMETRY_OBJECT. However, the implementation of the method for Area may
differ for each subtype of GEOMETRY_OBIJECT. One possibility is to have a general
implementation for calculating the area of a generalized GEOMETRY_OBIJECT (for

19In programming languages, there are several kinds of polymorphism. The interested reader is referred
to the Selected Bibliography at the end of this chapter for works that include a more thorough discus-
sion.
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example, by writing a general algorithm to calculate the area of a polygon) and then
to rewrite more efficient algorithms to calculate the areas of specific types of geo-
metric objects, such as a circle, a rectangle, a triangle, and so on. In this case, the Area
function is overloaded by different implementations.

The ODMS must now select the appropriate method for the Area function based on
the type of geometric object to which it is applied. In strongly typed systems, this
can be done at compile time, since the object types must be known. This is termed
early (or static) binding. However, in systems with weak typing or no typing (such
as Smalltalk and LISP), the type of the object to which a function is applied may not
be known until runtime. In this case, the function must check the type of object at
runtime and then invoke the appropriate method. This is often referred to as late
(or dynamic) binding.

Multiple Inheritance and Selective Inheritance. Multiple inheritance occurs
when a certain subtype T is a subtype of two (or more) types and hence inherits the
functions (attributes and methods) of both supertypes. For example, we may create a
subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and
ENGINEER. This leads to the creation of a type lattice rather than a type hierarchy.
One problem that can occur with multiple inheritance is that the supertypes from
which the subtype inherits may have distinct functions of the same name, creating an
ambiguity. For example, both MANAGER and ENGINEER may have a function called
Salary. If the Salary function is implemented by different methods in the MANAGER
and ENGINEER supertypes, an ambiguity exists as to which of the two is inherited by
the subtype ENGINEERING_MANAGER. It is possible, however, that both ENGINEER
and MANAGER inherit Salary from the same supertype (such as EMPLOYEE) higher
up in the lattice. The general rule is that if a function is inherited from some common
supertype, then it is inherited only once. In such a case, there is no ambiguity; the
problem only arises if the functions are distinct in the two supertypes.

There are several techniques for dealing with ambiguity in multiple inheritance.
One solution is to have the system check for ambiguity when the subtype is created,
and to let the user explicitly choose which function is to be inherited at this time. A
second solution is to use some system default. A third solution is to disallow multi-
ple inheritance altogether if name ambiguity occurs, instead forcing the user to
change the name of one of the functions in one of the supertypes. Indeed, some OO
systems do not permit multiple inheritance at all. In the object database standard
(see Section 11.3), multiple inheritance is allowed for operation inheritance of
interfaces, but is not allowed for EXTENDS inheritance of classes.

Selective inheritance occurs when a subtype inherits only some of the functions of
a supertype. Other functions are not inherited. In this case, an EXCEPT clause may
be used to list the functions in a supertype that are not to be inherited by the sub-
type. The mechanism of selective inheritance is not typically provided in ODBs, but
it is used more frequently in artificial intelligence applications.?

20In the ODMG model, type inheritance refers to inheritance of operations only, not attributes (see
Section 11.3).
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11.1.7 Summary of Object Database Concepts

To conclude this section, we give a summary of the main concepts used in ODBs
and object-relational systems:

B Objectidentity. Objects have unique identities that are independent of their
attribute values and are generated by the ODMS.

® Type constructors. Complex object structures can be constructed by apply-
ing in a nested manner a set of basic constructors, such as tuple, set, list,
array, and bag.

® Encapsulation of operations. Both the object structure and the operations
that can be applied to individual objects are included in the type definitions.

B Programming language compatibility. Both persistent and transient
objects are handled seamlessly. Objects are made persistent by being reach-
able from a persistent collection (extent) or by explicit naming.

B Type hierarchies and inheritance. Object types can be specified by using a
type hierarchy, which allows the inheritance of both attributes and methods
(operations) of previously defined types. Multiple inheritance is allowed in
some models.

® Extents. All persistent objects of a particular type can be stored in an extent.
Extents corresponding to a type hierarchy have set/subset constraints
enforced on their collections of persistent objects.

B Polymorphism and operator overloading. Operations and method names
can be overloaded to apply to different object types with different imple-
mentations.

In the following sections we show how these concepts are realized in the SQL stan-
dard (Section 11.2) and the ODMG standard (Section 11.3).

11.2 Object-Relational Features:
Object Database Extensions to SQL

We introduced SQL as the standard language for RDBMSs in Chapters 4 and 5. As
we discussed, SQL was first specified by Chamberlin and Boyce (1974) and under-
went enhancements and standardization in 1989 and 1992. The language continued
its evolution with a new standard, initially called SQL3 while being developed, and
later known as SQL:99 for the parts of SQL3 that were approved into the standard.
Starting with the version of SQL known as SQL3, features from object databases
were incorporated into the SQL standard. At first, these extensions were known as
SQL/Object, but later they were incorporated in the main part of SQL, known as
SQL/Foundation. We will use that latest standard, SQL:2008, in our presentation of
the object features of SQL, even though this may not yet have been realized in com-
mercial DBMSs that follow SQL. We will also discuss how the object features of SQL
evolved to their latest manifestation in SQL:2008.
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The relational model with object database enhancements is sometimes referred to
as the object-relational model. Additional revisions were made to SQL in 2003 and
2006 to add features related to XML (see Chapter 12).

The following are some of the object database features that have been included in
SQL:

B Some type constructors have been added to specify complex objects. These
include the row type, which corresponds to the tuple (or struct) constructor.
An array type for specifying collections is also provided. Other collection
type constructors, such as set, list, and bag constructors, were not part of the
original SQL/Object specifications but were later included in the standard.

® A mechanism for specifying object identity through the use of reference type
is included.

® Encapsulation of operations is provided through the mechanism of user-
defined types (UDTs) that may include operations as part of their declara-
tion. These are somewhat similar to the concept of abstract data types that
were developed in programming languages. In addition, the concept of user-
defined routines (UDRs) allows the definition of general methods (opera-
tions).

B Inheritance mechanisms are provided using the keyword UNDER.

We now discuss each of these concepts in more detail. In our discussion, we will
refer to the example in Figure 11.4.

11.2.1 User-Defined Types and Complex Structures for Objects

To allow the creation of complex-structured objects, and to separate the declaration
of a type from the creation of a table, SQL now provides user-defined types
(UDTs). In addition, four collection types have been included to allow for multival-
ued types and attributes in order to specify complex-structured objects rather than
just simple (flat) records. The user will create the UDTs for a particular application
as part of the database schema. A UDT may be specified in its simplest form using
the following syntax:

CREATE TYPE TYPE_NAME AS (<component declarations>);

Figure 11.4 illustrates some of the object concepts in SQL. We will explain the exam-
ples in this figure gradually as we explain the concepts. First, a UDT can be used as
either the type for an attribute or as the type for a table. By using a UDT as the type
for an attribute within another UDT, a complex structure for objects (tuples) in a
table can be created, much like that achieved by nesting type constructors. This is
similar to using the struct type constructor of Section 11.1.3. For example, in Figure
11.4(a), the UDT STREET_ADDR_TYPE is used as the type for the STREET_ADDR
attribute in the UDT USA_ADDR_TYPE. Similarly, the UDT USA_ADDR_TYPE is in
turn used as the type for the ADDR attribute in the UDT PERSON_TYPE in Figure
11.4(b). If aUDT does not have any operations, as in the examples in Figure 11.4(a),
it is possible to use the concept of ROW TYPE to directly create a structured attribute
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(a)

(b)

(c)

CREATE TYPE STREET_ADDR_TYPE AS ( Figure 11.4
NUMBER VARCHAR (5), lllustrating some of the object
STREET_NAME VARCHAR (25), features of SQL. (a) Using UDTs
APT_NO VARCHAR (5), as types for attributes such as
SUITE_NO VARCHAR (5) Address and Phone, (b) Specifying
% UDT for PERSON_TYPE, (c)

Specifying UDTs for STUDENT_TYPE
and EMPLOYEE_TYPE as two sub-
types of PERSON_TYPE

CREATE TYPE USA_ADDR_TYPE AS (
STREET_ADDR STREET_ADDR_TYPE,
CITY VARCHAR (25),

ZIP VARCHAR (10)

)s

CREATE TYPE USA_PHONE_TYPE AS (
PHONE_TYPE VARCHAR (5),
AREA_CODE  CHAR (3),
PHONE_NUM CHAR (7)

)s

CREATE TYPE PERSON_TYPE AS (

NAME VARCHAR (35),
SEX CHAR,
BIRTH_DATE  DATE,
PHONES USA_PHONE_TYPE ARRAY [4],
ADDR USA_ADDR_TYPE
INSTANTIABLE
NOT FINAL

REF IS SYSTEM GENERATED
INSTANCE METHOD AGE() RETURNS INTEGER;
CREATE INSTANCE METHOD AGE() RETURNS INTEGER

FOR PERSON_TYPE

BEGIN

RETURN /* CODE TO CALCULATE A PERSON'S AGE FROM
TODAY'S DATE AND SELF.BIRTH_DATE */

END;

)

CREATE TYPE GRADE_TYPE AS (
COURSENO  CHAR (8),
SEMESTER VARCHAR (8),
YEAR CHAR (4),
GRADE CHAR
)s
CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (
MAJOR_CODE CHAR (4),
STUDENT_ID  CHAR (12),
DEGREE VARCHAR (5),
TRANSCRIPT  GRADE_TYPE ARRAY [100] (continues)
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Figure 11.4
(continued)
lllustrating some of
the object features of
SQL. (c) (continued)
Specifying UDTs for
STUDENT_TYPE and
EMPLOYEE_TYPE as
two subtypes of
PERSON_TYPE, (d)
Creating tables based
on some of the UDTs,
and illustrating table
inheritance, (e)
Specifying relation-
ships using REF and
SCOPE.

(d

(e)
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INSTANTIABLE
NOT FINAL
INSTANCE METHOD GPA() RETURNS FLOAT;
CREATE INSTANCE METHOD GPA() RETURNS FLOAT
FOR STUDENT_TYPE
BEGIN

RETURN /* CODE TO CALCULATE A STUDENT'S GPA FROM

SELFTRANSCRIPT */
END;
)s
CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (

JOB_CODE CHAR (4),
SALARY FLOAT,
SSN CHAR (11)
INSTANTIABLE
NOT FINAL

)s

CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (
DEPT_MANAGED  CHAR (20)

INSTANTIABLE

)s

CREATE TABLE PERSON OF PERSON_TYPE
REF IS PERSON_ID SYSTEM GENERATED;

CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE
UNDER PERSON;

CREATE TABLE MANAGER OF MANAGER_TYPE
UNDER EMPLOYEE;

CREATE TABLE STUDENT OF STUDENT_TYPE
UNDER PERSON;

CREATE TYPE COMPANY_TYPE AS (
COMP_NAME VARCHAR (20),
LOCATION VARCHAR (20));
CREATE TYPE EMPLOYMENT_TYPE AS (
Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),
Company REF (COMPANY_TYPE) SCOPE (COMPANY) );
CREATE TABLE COMPANY OF COMPANY_TYPE (
REF IS COMP_ID SYSTEM GENERATED,
PRIMARY KEY (COMP_NAME) );
CREATE TABLE EMPLOYMENT OF EMPLOYMENT_TYPE;
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by using the keyword ROW. For example, we could use the following instead of
declaring STREET_ADDR_TYPE as a separate type as in Figure 11.4(a):

CREATE TYPE USA_ADDR_TYPE AS (

STREET_ADDR ROW ( NUMBER VARCHAR (5),
STREET_NAME VARCHAR (25),
APT_NO VARCHAR (5),
SUITE_NO VARCHAR (5) ),

CITY VARCHAR (25),

ZIP VARCHAR (10)

);

To allow for collection types in order to create complex-structured objects, four
constructors are now included in SQL: ARRAY, MULTISET, LIST, and SET. These are
similar to the type constructors discussed in Section 11.1.3. In the initial specifica-
tion of SQL/Object, only the ARRAY type was specified, since it can be used to sim-
ulate the other types, but the three additional collection types were included in the
latest version of the SQL standard. In Figure 11.4(b), the PHONES attribute of
PERSON_TYPE has as its type an array whose elements are of the previously defined
UDT USA_PHONE_TYPE. This array has a maximum of four elements, meaning
that we can store up to four phone numbers per person. An array can also have no
maximum number of elements if desired.

An array type can have its elements referenced using the common notation of square
brackets. For example, PHONES[1] refers to the first location value in a PHONES
attribute (see Figure 11.4(b)). A built-in function CARDINALITY can return the cur-
rent number of elements in an array (or any other collection type). For example,
PHONES[CARDINALITY (PHONES)] refers to the last element in the array.

The commonly used dot notation is used to refer to components of a ROW TYPE or
a UDT. For example, ADDR.CITY refers to the CITY component of an ADDR attribute
(see Figure 11.4(b)).

11.2.2 Object Identifiers Using Reference Types

Unique system-generated object identifiers can be created via the reference type in
the latest version of SQL. For example, in Figure 11.4(b), the phrase:

REF IS SYSTEM GENERATED

indicates that whenever a new PERSON_TYPE object is created, the system will
assign it a unique system-generated identifier. It is also possible not to have a
system-generated object identifier and use the traditional keys of the basic relational
model if desired.

In general, the user can specify that system-generated object identifiers for the indi-
vidual rows in a table should be created. By using the syntax:

REF IS <OID_ATTRIBUTE> <VALUE_GENERATION_METHOD> ;
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the user declares that the attribute named <OID_ATTRIBUTE> will be used to iden-
tify individual tuples in the table. The options for <VALUE_GENERATION
_METHOD> are SYSTEM GENERATED or DERIVED. In the former case, the system
will automatically generate a unique identifier for each tuple. In the latter case, the
traditional method of using the user-provided primary key value to identify tuples
is applied.

11.2.3 Creating Tables Based on the UDTs

For each UDT that is specified to be instantiable via the phrase INSTANTIABLE (see
Figure 11.4(b)), one or more tables may be created. This is illustrated in Figure
11.4(d), where we create a table PERSON based on the PERSON_TYPE UDT. Notice
that the UDTs in Figure 11.4(a) are noninstantiable, and hence can only be used as
types for attributes, but not as a basis for table creation. In Figure 11.4(b), the attrib-
ute PERSON_ID will hold the system-generated object identifier whenever a new
PERSON record (object) is created and inserted in the table.

11.2.4 Encapsulation of Operations

In SQL, a user-defined type can have its own behavioral specification by specifying
methods (or operations) in addition to the attributes. The general form of a UDT
specification with methods is as follows:

CREATE TYPE <TYPE-NAME> (
<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>
<DECLARATION OF FUNCTIONS (METHODS)>
);
For example, in Figure 11.4(b), we declared a method Age() that calculates the age
of an individual object of type PERSON_TYPE.

The code for implementing the method still has to be written. We can refer to the
method implementation by specifying the file that contains the code for the
method, or we can write the actual code within the type declaration itself (see
Figure 11.4(b)).

SQL provides certain built-in functions for user-defined types. For a UDT called
TYPE_T, the constructor function TYPE_T( ) returns a new object of that type. In
the new UDT object, every attribute is initialized to its default value. An observer
function A is implicitly created for each attribute A to read its value. Hence, A(X) or
XA returns the value of attribute A of TYPE_T if X is of type TYPE_T. A mutator
function for updating an attribute sets the value of the attribute to a new value. SQL
allows these functions to be blocked from public use; an EXECUTE privilege is
needed to have access to these functions.

In general, a UDT can have a number of user-defined functions associated with it.
The syntax is

INSTANCE METHOD <NAME> (KARGUMENT_LIST>) RETURNS
<RETURN_TYPE>;
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Two types of functions can be defined: internal SQL and external. Internal functions
are written in the extended PSM language of SQL (see Chapter 13). External func-
tions are written in a host language, with only their signature (interface) appearing
in the UDT definition. An external function definition can be declared as follows:

DECLARE EXTERNAL <FUNCTION_NAME> <SIGNATURE>
LANGUAGE <LANGUAGE_NAME>;

Attributes and functions in UDTs are divided into three categories:

B PUBLIC (visible at the UDT interface)
B PRIVATE (not visible at the UDT interface)
B PROTECTED (visible only to subtypes)

It is also possible to define virtual attributes as part of UDTs, which are computed
and updated using functions.

11.2.5 Specifying Inheritance and Overloading of Functions

Recall that we already discussed many of the principles of inheritance in Section
11.1.5. SQL has rules for dealing with type inheritance (specified via the UNDER
keyword). In general, both attributes and instance methods (operations) are inher-
ited. The phrase NOT FINAL must be included in a UDT if subtypes are allowed to
be created under that UDT (see Figure 11.4(a) and (b), where PERSON_TYPE,
STUDENT_TYPE, and EMPLOYEE_TYPE are declared to be NOT FINAL). Associated
with type inheritance are the rules for overloading of function implementations
and for resolution of function names. These inheritance rules can be summarized
as follows:

m All attributes are inherited.

B The order of supertypes in the UNDER clause determines the inheritance
hierarchy.

B An instance of a subtype can be used in every context in which a supertype
instance is used.

B A subtype can redefine any function that is defined in its supertype, with the
restriction that the signature be the same.

B When a function is called, the best match is selected based on the types of all
arguments.

® For dynamic linking, the runtime types of parameters is considered.

Consider the following examples to illustrate type inheritance, which are illustrated
in Figure 11.4(c). Suppose that we want to create two subtypes of PERSON_TYPE:
EMPLOYEE_TYPE and STUDENT_TYPE. In addition, we also create a subtype
MANAGER_TYPE that inherits all the attributes (and methods) of EMPLOYEE_TYPE
but has an additional attribute DEPT_MANAGED. These subtypes are shown in
Figure 11.4(c).

In general, we specify the local attributes and any additional specific methods for
the subtype, which inherits the attributes and operations of its supertype.
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Another facility in SQL is table inheritance via the supertable/subtable facility. This
is also specified using the keyword UNDER (see Figure 11.4(d)). Here, a new record
that is inserted into a subtable, say the MANAGER table, is also inserted into its
supertables EMPLOYEE and PERSON. Notice that when a record is inserted in
MANAGER, we must provide values for all its inherited attributes. INSERT, DELETE,
and UPDATE operations are appropriately propagated.

11.2.6 Specifying Relationships via Reference

A component attribute of one tuple may be a reference (specified using the key-
word REF) to a tuple of another (or possibly the same) table. An example is shown
in Figure 11.4(e).

The keyword SCOPE specifies the name of the table whose tuples can be referenced
by the reference attribute. Notice that this is similar to a foreign key, except that the
system-generated value is used rather than the primary key value.

SQL uses a dot notation to build path expressions that refer to the component
attributes of tuples and row types. However, for an attribute whose type is REF, the
dereferencing symbol —> is used. For example, the query below retrieves employees
working in the company named ‘ABCXYZ’ by querying the EMPLOYMENT table:

SELECT E.Employee->NAME
FROM EMPLOYMENT AS E
WHERE E.Company-—>COMP_NAME = ‘ABCXYZ’;

In SQL, —> is used for dereferencing and has the same meaning assigned to it in the
C programming language. Thus, if r is a reference to a tuple and a is a component
attribute in that tuple, then r —> a is the value of attribute a in that tuple.

If several relations of the same type exist, SQL provides the SCOPE keyword by
which a reference attribute may be made to point to a tuple within a specific table of
that type.

11.3 The ODMG Object Model and the Object
Definition Language ODL

As we discussed in the introduction to Chapter 4, one of the reasons for the success
of commercial relational DBMSs is the SQL standard. The lack of a standard for
ODMSs for several years may have caused some potential users to shy away from
converting to this new technology. Subsequently, a consortium of ODMS vendors
and users, called ODMG (Object Data Management Group), proposed a standard
that is known as the ODMG-93 or ODMG 1.0 standard. This was revised into
ODMG 2.0, and later to ODMG 3.0. The standard is made up of several parts,
including the object model, the object definition language (ODL), the object query
language (OQL), and the bindings to object-oriented programming languages.

In this section, we describe the ODMG object model and the ODL. In Section 11.4,
we discuss how to design an ODB from an EER conceptual schema. We will give an
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overview of OQL in Section 11.5, and the C++ language binding in Section 11.6.
Examples of how to use ODL, OQL, and the C++ language binding will use the
UNIVERSITY database example introduced in Chapter 8. In our description, we will
follow the ODMG 3.0 object model as described in Cattell et al. (2000).%! It is
important to note that many of the ideas embodied in the ODMG object model are
based on two decades of research into conceptual modeling and object databases by
many researchers.

The incorporation of object concepts into the SQL relational database standard,
leading to object-relational technology, was presented in Section 11.2.

11.3.1 Overview of the Object Model of ODMG

The ODMG object model is the data model upon which the object definition lan-
guage (ODL) and object query language (OQL) are based. It is meant to provide a
standard data model for object databases, just as SQL describes a standard data
model for relational databases. It also provides a standard terminology in a field
where the same terms were sometimes used to describe different concepts. We will
try to adhere to the ODMG terminology in this chapter. Many of the concepts in the
ODMG model have already been discussed in Section 11.1, and we assume the
reader has read this section. We will point out whenever the ODMG terminology
differs from that used in Section 11.1.

Objects and Literals. Objects and literals are the basic building blocks of the
object model. The main difference between the two is that an object has both an
object identifier and a state (or current value), whereas a literal has a value (state)
but no object identifier.?? In either case, the value can have a complex structure. The
object state can change over time by modifying the object value. A literal is basically
a constant value, possibly having a complex structure, but it does not change.

An object has five aspects: identifier, name, lifetime, structure, and creation.

1. The object identifier is a unique system-wide identifier (or Object_id).?
Every object must have an object identifier.

2. Some objects may optionally be given a unique name within a particular
ODMS—this name can be used to locate the object, and the system should
return the object given that name.?* Obviously, not all individual objects
will have unique names. Typically, a few objects, mainly those that hold col-
lections of objects of a particular object type—such as extents—will have a
name. These names are used as entry points to the database; that is, by
locating these objects by their unique name, the user can then locate other
objects that are referenced from these objects. Other important objects in

21The earlier versions of the object model were published in 1993 and 1997.
22We will use the terms value and state interchangeably here.
23This corresponds to the OID of Section 11.1.2.

24This corresponds to the naming mechanism for persistence, described in Section 11.1.4.
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the application may also have unique names, and it is possible to give more
than one name to an object. All names within a particular ODMS must be
unique.

. The lifetime of an object specifies whether it is a persistent object (that is, a

database object) or transient object (that is, an object in an executing pro-
gram that disappears after the program terminates). Lifetimes are indepen-
dent of types—that is, some objects of a particular type may be transient
whereas others may be persistent.

. The structure of an object specifies how the object is constructed by using

the type constructors. The structure specifies whether an object is atomic or
not. An atomic object refers to a single object that follows a user-defined
type, such as Employee or Department. If an object is not atomic, then it will be
composed of other objects. For example, a collection object is not an atomic
object, since its state will be a collection of other objects.?®> The term atomic
object is different from how we defined the atom constructor in Section
11.1.3, which referred to all values of built-in data types. In the ODMG
model, an atomic object is any individual user-defined object. All values of the
basic built-in data types are considered to be literals.

. Object creation refers to the manner in which an object can be created. This

is typically accomplished via an operation new for a special Object_Factory
interface. We shall describe this in more detail later in this section.

In the object model, a literal is a value that does not have an object identifier.
However, the value may have a simple or complex structure. There are three types of
literals: atomic, structured, and collection.

1. Atomic literals?® correspond to the values of basic data types and are prede-

fined. The basic data types of the object model include long, short, and
unsigned integer numbers (these are specified by the keywords long, short,
unsigned long, and unsigned short in ODL), regular and double precision
floating point numbers (float, double), Boolean values (boolean), single
characters (char), character strings (string), and enumeration types (enum),
among others.

. Structured literals correspond roughly to values that are constructed using

the tuple constructor described in Section 11.1.3. The built-in structured lit-
erals include Date, Interval, Time, and Timestamp (see Figure 11.5(b)).
Additional user-defined structured literals can be defined as needed by each
application.?” User-defined structures are created using the STRUCT key-
word in ODL, as in the C and C++ programming languages.

25In the ODMG model, atomic objects do not correspond to objects whose values are basic data types.

All basic values (integers, reals, and so on) are considered literals.

26The use of the word atomic in atomic literal corresponds to the way we used atom constructor in
Section 11.1.3.

27The structures for Date, Interval, Time, and Timestamp can be used to create either literal values or
objects with identifiers.
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(a) interface Object {
boolean
object
void

(b) Class Date : Object {
enum

enum

unsigned short
unsigned short
unsigned short
boolean
boolean
e B

Class Time : Object {

unsigned short
unsigned short
unsigned short
unsigned short
boolean
boolean

Time

Time

Interval

class Timestamp : Object {

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

Timestamp

Figure 11.5

Overview of the interface defini-
same_as(in object other_object); tions for part of the ODMG object
copy(); model. (a) The basic Object inter-
delete(); face, inherited by all objects, (b)

Some standard interfaces for
structured literals

Weekday
{ Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday };
Month
{ January, February, March, April, May, June,
July, August, September, October, November,
December };
year();
month();
day();

is_equal(in Date other_date);
is_greater(in Date other_date);

hour();
minute();
second();
millisecond();

is_equal(in Time a_time);
is_greater(in Time a_time);

add_interval(in Interval an_interval);
subtract_interval(in Interval an_interval);
subtract_time(in Time other_time); };

year();
month();
day();

hour();
minute();
second();
millisecond();

plus(in Interval an_interval); (continues)
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Figure 11.5
(continued)
Overview of the inter-
face definitions for
part of the ODMG
object model.

(b) (continued) Some
standard interfaces
for structured literals,
(c) Interfaces for
collections and
iterators.

Timestamp
boolean
boolean
I

class Interval :
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

Interval
Interval
Interval
Interval
boolean
boolean

h

minus(in Interval an_interval);
is_equal(in Timestamp a_timestamp);
is_greater(in Timestamp a_timestamp);

Object {
day();

hour();
minute();
second();
millisecond();

plus(in Interval an_interval);
minus(in Interval an_interval);
product(in long a_value);
quotient(in long a_value);
is_equal(in interval an_interval);
is_greater(in interval an_interval);

(c) interface Collection : Object {

exception
unsigned long
boolean
boolean

void

void

iterator
5
interface lterator {
exception
boolean
void
Object
void
5
interface set : Collection {
set
boolean
5
interface bag : Collection {
unsigned long

ElementNotFound{ Object element; };
cardinality();
is_empty();

contains_element(in Object element);
insert_element(in Object element);
remove_element(in Object element)
raises(ElementNotFound);
create_iterator(in boolean stable);

NoMoreElements();

at_end();

reset();

get_element() raises(NoMoreElements);
next_position() raises(NoMoreElements);

create_union(in set other_set);

is_subset_of(in set other_set);

occurrences_of(in Object element);
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bag create_union(in Bag other_bag);
%
interface list : Collection {
exception Invalid_Index{unsigned_long index; );
void remove_element_at(in unsigned long index)
raises(Invalidindex);
Object retrieve_element_at(in unsigned long index)
raises(Invalidindex);
void replace_element_at(in Object element, in unsigned long index)
raises(Invalidindex);
void insert_element_after(in Object element, in unsigned long index)
raises(Invalidindex);
void insert_element_first(in Object element);
void remove_first_element() raises(ElementNotFound);
Object retrieve_first_element() raises(ElementNotFound);
list concat(in list other_list);
void append(in list other_list);
%
interface array : Collection {
exception Invalid_Index{unsigned_long index; };
exception Invalid_Size{unsigned_long size; };
void remove_element_at(in unsigned long index)
raises(Invalidindex);
Object retrieve_element_at(in unsigned long index)
raises(Invalidindex);
void replace_element_at(in unsigned long index, in Object element)
raises(Invalidindex);
void resize(in unsigned long new_size)
raises(InvalidSize);
%

struct association { Object key; Object value; };
interface dictionary : Collection {

exception
exception
void

void
Object
boolean

DuplicateName({string key; };

KeyNotFound{Object key; };

bind(in Object key, in Object value)
raises(DuplicateName);

unbind(in Object key) raises(KeyNotFound);

lookup(in Object key) raises(KeyNotFound);

contains_key(in Object key);
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3. Collection literals specify a literal value that is a collection of objects or val-
ues but the collection itself does not have an Object_id. The collections in the
object model can be defined by the type generators set<T>, bag<T>, list<T>,
and array<T>, where T is the type of objects or values in the collection.?
Another collection type is dictionary<K, V>, which is a collection of associa-
tions <K, V>, where each K is a key (a unique search value) associated with a
value V; this can be used to create an index on a collection of values V.

Figure 11.5 gives a simplified view of the basic types and type generators of the
object model. The notation of ODMG uses three concepts: interface, literal, and class.
Following the ODMG terminology, we use the word behavior to refer to operations
and state to refer to properties (attributes and relationships). An interface specifies
only behavior of an object type and is typically noninstantiable (that is, no objects
are created corresponding to an interface). Although an interface may have state
properties (attributes and relationships) as part of its specifications, these cannot be
inherited from the interface. Hence, an interface serves to define operations that can
be inherited by other interfaces, as well as by classes that define the user-defined
objects for a particular application. A class specifies both state (attributes) and
behavior (operations) of an object type, and is instantiable. Hence, database and
application objects are typically created based on the user-specified class declara-
tions that form a database schema. Finally, a literal declaration specifies state but no
behavior. Thus, a literal instance holds a simple or complex structured value but has
neither an object identifier nor encapsulated operations.

Figure 11.5 is a simplified version of the object model. For the full specifications, see
Cattell et al. (2000). We will describe some of the constructs shown in Figure 11.5 as
we describe the object model. In the object model, all objects inherit the basic inter-
face operations of Object, shown in Figure 11.5(a); these include operations such as
copy (creates a new copy of the object), delete (deletes the object), and same_as
(compares the object’s identity to another object).?’ In general, operations are
applied to objects using the dot notation. For example, given an object O, to com-
pare it with another object P, we write

O.same_as(P)

The result returned by this operation is Boolean and would be true if the identity of
P is the same as that of O, and false otherwise. Similarly, to create a copy P of object
O, we write

P = O.copy()

An alternative to the dot notation is the arrow notation: O->same_as(P) or
O->copy().

28These are similar to the corresponding type constructors described in Section 11.1.3.

29Additional operations are defined on objects for locking purposes, which are not shown in Figure 11.5.
We discuss locking concepts for databases in Chapter 22.
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11.3.2 Inheritance in the Object Model of ODMG

In the ODMG object model, two types of inheritance relationships exist: behavior-
only inheritance and state plus behavior inheritance. Behavior inheritance is also
known as ISA or interface inheritance, and is specified by the colon (:) notation.*
Hence, in the ODMG object model, behavior inheritance requires the supertype to
be an interface, whereas the subtype could be either a class or another interface.

The other inheritance relationship, called EXTENDS inheritance, is specified by the
keyword extends. It is used to inherit both state and behavior strictly among classes,
so both the supertype and the subtype must be classes. Multiple inheritance via
extends is not permitted. However, multiple inheritance is allowed for behavior
inheritance via the colon (:) notation. Hence, an interface may inherit behavior
from several other interfaces. A class may also inherit behavior from several inter-
faces via colon (:) notation, in addition to inheriting behavior and state from at most
one other class via extends. In Section 11.3.4 we will give examples of how these two
inheritance relationships—*:” and extends—may be used.

11.3.3 Built-in Interfaces and Classes in the Object Model

Figure 11.5 shows the built-in interfaces and classes of the object model. All inter-
faces, such as Collection, Date, and Time, inherit the basic Object interface. In the
object model, there is a distinction between collection objects, whose state contains
multiple objects or literals, versus atomic (and structured) objects, whose state is an
individual object or literal. Collection objects inherit the basic Collection interface
shown in Figure 11.5(c), which shows the operations for all collection objects.
Given a collection object O, the O.cardinality() operation returns the number of ele-
ments in the collection. The operation O.is_empty() returns true if the collection O
is empty, and returns false otherwise. The operations O.insert_element(E) and
O.remove_element(E) insert or remove an element E from the collection O. Finally,
the operation O.contains_element(E) returns true if the collection O includes ele-
ment E, and returns false otherwise. The operation I = O.create_iterator() creates an
iterator object I for the collection object O, which can iterate over each element in
the collection. The interface for iterator objects is also shown in Figure 11.5(c). The
Lreset() operation sets the iterator at the first element in a collection (for an
unordered collection, this would be some arbitrary element), and Lnext_position()
sets the iterator to the next element. The I.get_element() retrieves the current ele-
ment, which is the element at which the iterator is currently positioned.

The ODMG object model uses exceptions for reporting errors or particular condi-
tions. For example, the ElementNotFound exception in the Collection interface would

30The ODMG report also calls interface inheritance as type/subtype, is-a, and generalization/specializa-
tion relationships, although, in the literature these terms have been used to describe inheritance of both
state and operations (see Chapter 8 and Section 11.1).
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be raised by the O.remove_element(E) operation if E is not an element in the collec-
tion O. The NoMoreElements exception in the iterator interface would be raised by
the Lnext_position() operation if the iterator is currently positioned at the last ele-
ment in the collection, and hence no more elements exist for the iterator to point to.

Collection objects are further specialized into set, list, bag, array, and dictionary, which
inherit the operations of the Collection interface. A set<T> type generator can be
used to create objects such that the value of object O is a set whose elements are of
type T. The Set interface includes the additional operation P = O.create_union(S) (see
Figure 11.5(c)), which returns a new object P of type set<T> that is the union of the
two sets O and S. Other operations similar to create_union (not shown in Figure
11.5(c)) are create_intersection(S) and create_difference(S). Operations for set com-
parison include the O.is_subset_of(S) operation, which returns true if the set object
O is a subset of some other set object S, and returns false otherwise. Similar opera-
tions (not shown in Figure 11.5(c)) are is_proper_subset_of(S), is_superset_of(S), and
is_proper_superset_of(S). The bag<T> type generator allows duplicate elements in
the collection and also inherits the Collection interface. It has three operations—
create_union(b), create_intersection(b), and create_difference(b)—that all return a new
object of type bag<T>.

A list<T> object type inherits the Collection operations and can be used to create col-
lections where the order of the elements is important. The value of each such object
O is an ordered list whose elements are of type T. Hence, we can refer to the first, last,
and ith element in the list. Also, when we add an element to the list, we must specify
the position in the list where the element is inserted. Some of the list operations are
shown in Figure 11.5(c). If O is an object of type list<T>, the operation
O.insert_element_first(E) inserts the element E before the first element in the list O, so
that E becomes the first element in the list. A similar operation (not shown) is
O.insert_element_last(E). The operation O.insert_element_after(E, I) in Figure 11.5(c)
inserts the element E after the ith element in the list O and will raise the exception
Invalidindex if no ith element exists in O. A similar operation (not shown) is
O.insert_element_before(E, I). To remove elements from the list, the operations are E
= O.remove_first_element(), E = O.remove_last_element(), and E = O.remove_element
_at(I); these operations remove the indicated element from the list and return the
element as the operation’s result. Other operations retrieve an element without
removing it from the list. These are E = O.retrieve_first_element(), E = O.retrieve
_last_element(), and E = O.retrieve_element_at(I). Also, two operations to manipulate
lists are defined. They are P = O.concat(I), which creates a new list P that is the con-
catenation of lists O and I (the elements in list O followed by those in list I), and
O.append(I), which appends the elements of list I to the end of list O (without creat-
ing a new list object).

The array<T> object type also inherits the Collection operations, and is similar to list.
Specific operations for an array object O are O.replace_element_at(I, E), which
replaces the array element at position I with element E; E = O.remove_element_at(I),
which retrieves the ith element and replaces it with a NULL value; and
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E = Ovretrieve_element_at(I), which simply retrieves the ith element of the array. Any
of these operations can raise the exception Invalidindex if I is greater than the array’s
size. The operation O.resize(N) changes the number of array elements to N.

The last type of collection objects are of type dictionary<K,V>. This allows the cre-
ation of a collection of association pairs <K,V>, where all K (key) values are unique.
This allows for associative retrieval of a particular pair given its key value (similar to
an index). If O is a collection object of type dictionary<K,V>, then O.bind(K,V) binds
value V to the key K as an association <K, V> in the collection, whereas O.unbind(K)
removes the association with key K from O, and V = O.lookup(K) returns the value
V associated with key K in O. The latter two operations can raise the exception
KeyNotFound. Finally, O.contains_key(K) returns true if key K exists in O, and returns
false otherwise.

Figure 11.6 is a diagram that illustrates the inheritance hierarchy of the built-in con-
structs of the object model. Operations are inherited from the supertype to the sub-
type. The collection interfaces described above are not directly instantiable; that is,
one cannot directly create objects based on these interfaces. Rather, the interfaces
can be used to generate user-defined collection types—of type set, bag, list, array, or
dictionary—for a particular database application. If an attribute or class has a collec-
tion type, say a set, then it will inherit the operations of the set interface. For exam-
ple, in a UNIVERSITY database application, the user can specify a type for
set<STUDENT>, whose state would be sets of STUDENT objects. The programmer
can then use the operations for set<T> to manipulate an instance of type
set<STUDENT>. Creating application classes is typically done by utilizing the object
definition language ODL (see Section 11.3.6).

It is important to note that all objects in a particular collection must be of the same
type. Hence, although the keyword any appears in the specifications of collection
interfaces in Figure 11.5(c), this does not mean that objects of any type can be inter-
mixed within the same collection. Rather, it means that any type can be used when
specifying the type of elements for a particular collection (including other collec-
tion types!).
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11.3.4 Atomic (User-Defined) Objects

The previous section described the built-in collection types of the object model.
Now we discuss how object types for atomic objects can be constructed. These are
specified using the keyword class in ODL. In the object model, any user-defined
object that is not a collection object is called an atomic object.?!

For example, in a UNIVERSITY database application, the user can specify an object
type (class) for STUDENT objects. Most such objects will be structured objects; for
example, a STUDENT object will have a complex structure, with many attributes,
relationships, and operations, but it is still considered atomic because it is not a col-
lection. Such a user-defined atomic object type is defined as a class by specifying its
properties and operations. The properties define the state of the object and are fur-
ther distinguished into attributes and relationships. In this subsection, we elabo-
rate on the three types of components—attributes, relationships, and
operations—that a user-defined object type for atomic (structured) objects can
include. We illustrate our discussion with the two classes EMPLOYEE and
DEPARTMENT shown in Figure 11.7.

An attribute is a property that describes some aspect of an object. Attributes have
values (which are typically literals having a simple or complex structure) that are
stored within the object. However, attribute values can also be Object_ids of other
objects. Attribute values can even be specified via methods that are used to calculate
the attribute value. In Figure 11.7°? the attributes for EMPLOYEE are Name, Ssn,
Birth_date, Sex, and Age, and those for DEPARTMENT are Dname, Dnumber, Mgr,
Locations, and Projs. The Mgr and Projs attributes of DEPARTMENT have complex
structure and are defined via struct, which corresponds to the tuple constructor of
Section 11.1.3. Hence, the value of Mgr in each DEPARTMENT object will have two
components: Manager, whose value is an Object_id that references the EMPLOYEE
object that manages the DEPARTMENT, and Start_date, whose value is a date. The
locations attribute of DEPARTMENT is defined via the set constructor, since each
DEPARTMENT object can have a set of locations.

A relationship is a property that specifies that two objects in the database are related.
In the object model of ODMG, only binary relationships (see Section 7.4) are
explicitly represented, and each binary relationship is represented by a pair of inverse
references specified via the keyword relationship. In Figure 11.7, one relationship
exists that relates each EMPLOYEE to the DEPARTMENT in which he or she works—
the Works_for relationship of EMPLOYEE. In the inverse direction, each
DEPARTMENT is related to the set of EMPLOYEES that work in the DEPARTMENT—
the Has_emps relationship of DEPARTMENT. The keyword inverse specifies that
these two properties define a single conceptual relationship in inverse directions.

31As mentioned earlier, this definition of atomic object in the ODMG object model is different from the
definition of atom constructor given in Section 11.1.3, which is the definition used in much of the object-
oriented database literature.

32We are using the Object Definition Language (ODL) notation in Figure 11.7, which will be discussed in
more detail in Section 11.3.6.

33Section 7.4 discusses how a relationship can be represented by two attributes in inverse directions.
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class EMPLOYEE Figure 11.7
( extent ALL_EMPLOYEES The attributes, relationships,
key Ssn ) and operations in a class
{ definition.
attribute string Name;
attribute string Ssn;
attribute date Birth_date;
attribute enum Gender{M, F}  Sex;
attribute short Age;
relationship DEPARTMENT Works_for
inverse DEPARTMENT::Has_emps;
void reassign_emp(in string New_dname)
raises(dname_not_valid);
}
class DEPARTMENT
( extent ALL_DEPARTMENTS
key Dname, Dnumber )
{
attribute string Dname;
attribute short Dnumber;
attribute struct Dept_mgr {EMPLOYEE Manager, date Start_date}
Mgr;
attribute set<string> Locations;
attribute struct Projs {string Proj_name, time Weekly_hours)
Projs;
relationship set<EMPLOYEE> Has_emps inverse EMPLOYEE::Works_for;
void add_emp(in string New_ename) raises(ename_not_valid);
void change_manager(in string New_mgr_name; in date
Start_date);
}

By specifying inverses, the database system can maintain the referential integrity of
the relationship automatically. That is, if the value of Works_for for a particular
EMPLOYEE E refers to DEPARTMENT D, then the value of Has_emps for
DEPARTMENT D must include a reference to E in its set of EMPLOYEE references. If
the database designer desires to have a relationship to be represented in only one
direction, then it has to be modeled as an attribute (or operation). An example is the
Manager component of the Mgr attribute in DEPARTMENT.

In addition to attributes and relationships, the designer can include operations in
object type (class) specifications. Each object type can have a number of operation
signatures, which specify the operation name, its argument types, and its returned
value, if applicable. Operation names are unique within each object type, but they
can be overloaded by having the same operation name appear in distinct object
types. The operation signature can also specify the names of exceptions that can
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occur during operation execution. The implementation of the operation will
include the code to raise these exceptions. In Figure 11.7 the EMPLOYEE class has
one operation: reassign_emp, and the DEPARTMENT class has two operations:
add_emp and change_manager.

11.3.5 Extents, Keys, and Factory Objects

In the ODMG object model, the database designer can declare an extent (using the
keyword extent) for any object type that is defined via a class declaration. The extent
is given a name, and it will contain all persistent objects of that class. Hence, the
extent behaves as a set object that holds all persistent objects of the class. In Figure
11.7 the EMPLOYEE and DEPARTMENT classes have extents called ALL_EMPLOYEES
and ALL_DEPARTMENTS, respectively. This is similar to creating two objects—one
of type set<EMPLOYEE> and the second of type set<DEPARTMENT>—and making
them persistent by naming them ALL_EMPLOYEES and ALL_DEPARTMENTS.
Extents are also used to automatically enforce the set/subset relationship between
the extents of a supertype and its subtype. If two classes A and B have extents ALL_A
and ALL_B, and class B is a subtype of class A (that is, class B extends class A), then
the collection of objects in ALL_B must be a subset of those in ALL_A at any point.
This constraint is automatically enforced by the database system.

A class with an extent can have one or more keys. A key consists of one or more
properties (attributes or relationships) whose values are constrained to be unique
for each object in the extent. For example, in Figure 11.7 the EMPLOYEE class has
the Ssn attribute as key (each EMPLOYEE object in the extent must have a unique
Ssn value), and the DEPARTMENT class has two distinct keys: Dname and Dnumber
(each DEPARTMENT must have a unique Dname and a unique Dnumber). For a com-
posite key> that is made of several properties, the properties that form the key are
contained in parentheses. For example, if a class VEHICLE with an extent
ALL_VEHICLES has a key made up of a combination of two attributes State and
License_number, they would be placed in parentheses as (State, License_number) in
the key declaration.

Next, we present the concept of factory object—an object that can be used to gen-
erate or create individual objects via its operations. Some of the interfaces of factory
objects that are part of the ODMG object model are shown in Figure 11.8. The
interface ObjectFactory has a single operation, new(), which returns a new object
with an Object_id. By inheriting this interface, users can create their own factory
interfaces for each user-defined (atomic) object type, and the programmer can
implement the operation new differently for each type of object. Figure 11.8 also
shows a DateFactory interface, which has additional operations for creating a new
calendar_date, and for creating an object whose value is the current_date, among
other operations (not shown in Figure 11.8). As we can see, a factory object basically
provides the constructor operations for new objects.

34A composite key is called a compound key in the ODMG report.
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interface ObjectFactory {

new();

interface SetFactory : ObjectFactory {

new_of_size(in long size);

interface ListFactory : ObjectFactory {

new_of_size(in long size);

interface ArrayFactory : ObjectFactory {

new_of_size(in long size);

interface DictionaryFactory : ObjectFactory {

new_of_size(in long size);

interface DateFactory : ObjectFactory {

Object
5
Set
|5
List
5
Array
I3
Dictionary
%
exception
Date
Date

h

InvalidDate{};

calendar_date(  in unsigned short year,
in unsigned short month,
in unsigned short day )
raises(InvalidDate);

current();

interface DatabaseFactory {

Database

h

new();

interface Database {

void
void
void
Object

Object

. h

open(in string database_name)
raises(DatabaseNotFound, DatabaseOpen);
close() raises(DatabaseClosed, ...);
bind(in Object an_object, in string name)
raises(DatabaseClosed, ObjectNameNotUnique, ...);
unbind(in string name)
raises(DatabaseClosed, ObjectNameNotFound, ...);
lookup(in string object_name)
raises(DatabaseClosed, ObjectNameNotFound, ...);

Figure 11.8
Interfaces to illustrate factory
objects and database objects.
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Finally, we discuss the concept of a database. Because an ODBMS can create many
different databases, each with its own schema, the ODMG object model has inter-
faces for DatabaseFactory and Database objects, as shown in Figure 11.8. Each data-
base has its own database name, and the bind operation can be used to assign
individual unique names to persistent objects in a particular database. The lookup
operation returns an object from the database that has the specified object_name,
and the unbind operation removes the name of a persistent named object from the
database.

11.3.6 The Object Definition Language ODL

After our overview of the ODMG object model in the previous section, we now
show how these concepts can be utilized to create an object database schema using
the object definition language ODL.

The ODL is designed to support the semantic constructs of the ODMG object
model and is independent of any particular programming language. Its main use is
to create object specifications—that is, classes and interfaces. Hence, ODL is not a
full programming language. A user can specify a database schema in ODL inde-
pendently of any programming language, and then use the specific language bind-
ings to specify how ODL constructs can be mapped to constructs in specific
programming languages, such as C++, Smalltalk, and Java. We will give an overview
of the C++ binding in Section 11.6.

Figure 11.9(b) shows a possible object schema for part of the UNIVERSITY database,
which was presented in Chapter 8. We will describe the concepts of ODL using this
example, and the one in Figure 11.11. The graphical notation for Figure 11.9(b) is
shown in Figure 11.9(a) and can be considered as a variation of EER diagrams (see
Chapter 8) with the added concept of interface inheritance but without several EER
concepts, such as categories (union types) and attributes of relationships.

Figure 11.10 shows one possible set of ODL class definitions for the UNIVERSITY
database. In general, there may be several possible mappings from an object schema
diagram (or EER schema diagram) into ODL classes. We will discuss these options
further in Section 11.4.

Figure 11.10 shows the straightforward way of mapping part of the UNIVERSITY
database from Chapter 8. Entity types are mapped into ODL classes, and inheri-
tance is done using extends. However, there is no direct way to map categories
(union types) or to do multiple inheritance. In Figure 11.10 the classes PERSON,
FACULTY, STUDENT, and GRAD_STUDENT have the extents PERSONS, FACULTY,
STUDENTS, and GRAD_STUDENTS, respectively. Both FACULTY and STUDENT
extends PERSON and GRAD_STUDENT extends STUDENT. Hence, the collection of
STUDENTS (and the collection of FACULTY) will be constrained to be a subset of the

35The ODL syntax and data types are meant to be compatible with the Interface Definition language
(IDL) of CORBA (Common Object Request Broker Architecture), with extensions for relationships and
other database concepts.
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Figure 11.9
(@) Interface An example of a database schema. (a)

Graphical notation for representing ODL

Class STUDENT schemas. (b) A graphical object database
schema for part of the UNIVERSITY

database (GRADE and DEGREE classes

« » 1:1 are not shown).
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collection of PERSONSs at any time. Similarly, the collection of GRAD_STUDENTs
will be a subset of STUDENTSs. At the same time, individual STUDENT and FACULTY
objects will inherit the properties (attributes and relationships) and operations of
PERSON, and individual GRAD_STUDENT objects will inherit those of STUDENT.

The classes DEPARTMENT, COURSE, SECTION, and CURR_SECTION in Figure
11.10 are straightforward mappings of the corresponding entity types in Figure
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Figure 11.10
Possible ODL schema for the UNIVERSITY database in Figure 11.8(b).

class PERSON

(  extent PERSONS
key Ssn )
{ attribute struct Pname {  string  Fname,
string Mname,
string  Lname } Name;
attribute string Ssn;
attribute date Birth_date;
attribute enum Gender{M, F} Sex;

attribute struct Address { short No,
string  Street,
short Apt_no,

string  City,
string State,
short Zip } Address;
short Age(); };
class FACULTY extends PERSON
(  extent FACULTY )
{ attribute string Rank;
attribute float Salary;
attribute string Office;
attribute string Phone;

relationship DEPARTMENT  Works_in inverse DEPARTMENT::Has faculty;
relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::Advisor;
relationship  set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;

void give_raise(in float raise);

void promote(in string new rank); };
class GRADE
(  extent GRADES )

{

attribute enum GradeValues{A,B,C,D,F,|, P} Grade;

relationship SECTION Section inverse SECTION::Students;

relationship STUDENT Student inverse STUDENT::Completed_sections; };
class STUDENT extends PERSON

(  extent STUDENTS )
{ attribute string Class;
attribute DEPARTMENT Minors_in;

relationship DEPARTMENT Majors_in inverse DEPARTMENT::Has_majors;
relationship  set<GRADE> Completed_sections inverse GRADE::Student;
relationship set<CURR_SECTION> Registered_in INVERSE CURR_SECTION::Registered_students;

void change_major(in string dname) raises(dname_not_valid);
float gpal);

void register(in short secno) raises(section_not_valid);

void assign_grade(in short secno; IN GradeValue grade)

raises(section_not_valid,grade_not_valid); };
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class DEGREE

{ attribute string College;
attribute string Degree;
attribute string Year; };

class GRAD_STUDENT extends STUDENT

(  extent GRAD_STUDENTS )

{ attribute set<DEGREE> Degrees;

relationship FACULTY Advisor inverse FACULTY::Advises;
relationship  set<FACULTY> Committee inverse FACULTY::On_committee_of;

void assign_advisor(in string Lname; in string Fname)
raises(faculty_not_valid);
void assign_committee_member(in string Lname; in string Fname)

raises(faculty_not_valid); };
class DEPARTMENT

(  extent DEPARTMENTS
key Dname )

{ attribute string Dname;
attribute string Dphone;
attribute string Doffice;
attribute string College;
attribute FACULTY Chair;

relationship  set<FACULTY> Has_faculty inverse FACULTY::Works_in;

relationship  set<STUDENT> Has_majors inverse STUDENT::Majors_in;

relationship  set<COURSE> Offers inverse COURSE::Offered_by; };
class COURSE

(  extent COURSES
key Cno)

{ attribute string Cname;
attribute string Cno;
attribute string Description;

relationship  set<SECTION> Has_sections inverse SECTION::Of_course;
relationship <DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };
class SECTION

( extent SECTIONS)
{ attribute short Sec_no;
attribute string Year;
attribute enum Quarter{Fall, Winter, Spring, Summer}
Qtr;

relationship  set<GRADE> Students inverse GRADE::Section;
relationship  course Of_course inverse COURSE::Has_sections; };
class CURR_SECTION extends SECTION
( extent CURRENT_SECTIONS)
{ relationship set<STUDENT> Registered_students
inverse STUDENT::Registered_in
void register_student(in string Ssn)
raises(student_not_valid, section_full); };
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(a)
GeometryObject
RECTANGLE || TRIANGLE || CIRCLE |
(b) interface GeometryObject
{ attribute enum Shape{RECTANGLE, TRIANGLE, CIRCLE, ...
Shape;
attribute struct Point {short x, short y} Reference_point;
float perimeter();
float areal();
void translate(in short x_translation; in short y_translation);
void rotate(in float angle_of_rotation); };
class RECTANGLE : GeometryObject
(  extent RECTANGLES )
{ attribute struct Point {short x, short y} Reference_point;
attribute short Length;
attribute short Height;
attribute float Orientation_angle; };
class TRIANGLE : GeometryObject
(  extent TRIANGLES )
{ attribute struct Point {short x, short y} Reference_point;
attribute short Side_1;
i attribute short Side_2;
E;gm:zt:;h;: of inter- attribute float Side1_side2_angle;
face inheritance via *" attribute float Side1_orientation_angle; };
() Graphical schema class CIRCLE : GeometryObject
representation, ( extent CIRCLES )
(b) Corresponding { attribute struct Point {short x, short y} Reference_point;
interface and class attribute short Radius; };

definitions in ODL.

}

11.9(b). However, the class GRADE requires some explanation. The GRADE class
corresponds to the M:N relationship between STUDENT and SECTION in Figure
11.9(b). The reason it was made into a separate class (rather than as a pair of inverse

relationships) is because it includes

Hence, the M:N relationship is mapped to the class GRADE, and a pair of 1:N rela-
tionships, one between STUDENT and GRADE and the other between SECTION and

the relationship attribute Grade.*®

36We will discuss alternative mappings for attributes of relationships in Section 11.4.
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GRADE.*’ These relationships are represented by the following relationship proper-
ties: Completed_sections of STUDENT; Section and Student of GRADE; and Students of
SECTION (see Figure 11.10). Finally, the class DEGREE is used to represent the com-
posite, multivalued attribute degrees of GRAD_STUDENT (see Figure 8.10).

Because the previous example does not include any interfaces, only classes, we now
utilize a different example to illustrate interfaces and interface (behavior) inheri-
tance. Figure 11.11(a) is part of a database schema for storing geometric objects. An
interface GeometryObject is specified, with operations to calculate the perimeter and
area of a geometric object, plus operations to translate (move) and rotate an object.
Several classes (RECTANGLE, TRIANGLE, CIRCLE, ...) inherit the GeometryObject
interface. Since GeometryObject is an interface, it is noninstantiable—that is, no
objects can be created based on this interface directly. However, objects of type
RECTANGLE, TRIANGLE, CIRCLE, ... can be created, and these objects inherit all the
operations of the GeometryObject interface. Note that with interface inheritance,
only operations are inherited, not properties (attributes, relationships). Hence, if a
property is needed in the inheriting class, it must be repeated in the class definition,
as with the Reference_point attribute in Figure 11.11(b). Notice that the inherited
operations can have different implementations in each class. For example, the
implementations of the area and perimeter operations may be different for
RECTANGLE, TRIANGLE, and CIRCLE.

Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance of
interfaces by another interface. However, with the extends (class) inheritance, mul-
tiple inheritance is not permitted. Hence, a class can inherit via extends from at most
one class (in addition to inheriting from zero or more interfaces).

11.4 Object Database Conceptual Design

Section 11.4.1 discusses how object database (ODB) design differs from relational
database (RDB) design. Section 11.4.2 outlines a mapping algorithm that can be
used to create an ODB schema, made of ODMG ODL class definitions, from a con-
ceptual EER schema.

11.4.1 Differences between Conceptual Design
of ODB and RDB

One of the main differences between ODB and RDB design is how relationships are
handled. In ODB, relationships are typically handled by having relationship proper-
ties or reference attributes that include OID(s) of the related objects. These can be
considered as OID references to the related objects. Both single references and collec-
tions of references are allowed. References for a binary relationship can be declared

37This is similar to how an M:N relationship is mapped in the relational model (see Section 9.1) and in
the legacy network model (see Appendix E).
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in a single direction, or in both directions, depending on the types of access
expected. If declared in both directions, they may be specified as inverses of one
another, thus enforcing the ODB equivalent of the relational referential integrity
constraint.

In RDB, relationships among tuples (records) are specified by attributes with
matching values. These can be considered as value references and are specified via
foreign keys, which are values of primary key attributes repeated in tuples of the ref-
erencing relation. These are limited to being single-valued in each record because
multivalued attributes are not permitted in the basic relational model. Thus, M:N
relationships must be represented not directly, but as a separate relation (table), as
discussed in Section 9.1.

Mapping binary relationships that contain attributes is not straightforward in
ODBs, since the designer must choose in which direction the attributes should be
included. If the attributes are included in both directions, then redundancy in stor-
age will exist and may lead to inconsistent data. Hence, it is sometimes preferable to
use the relational approach of creating a separate table by creating a separate class to
represent the relationship. This approach can also be used for n-ary relationships,
with degree n > 2.

Another major area of difference between ODB and RDB design is how inheritance
is handled. In ODB, these structures are built into the model, so the mapping is
achieved by using the inheritance constructs, such as derived (:) and extends. In
relational design, as we discussed in Section 9.2, there are several options to choose
from since no built-in construct exists for inheritance in the basic relational model.
It is important to note, though, that object-relational and extended-relational sys-
tems are adding features to model these constructs directly as well as to include
operation specifications in abstract data types (see Section 11.2).

The third major difference is that in ODB design, it is necessary to specify the oper-
ations early on in the design since they are part of the class specifications. Although
it is important to specify operations during the design phase for all types of data-
bases, it may be delayed in RDB design as it is not strictly required until the imple-
mentation phase.

There is a philosophical difference between the relational model and the object
model of data in terms of behavioral specification. The relational model does not
mandate the database designers to predefine a set of valid behaviors or operations,
whereas this is a tacit requirement in the object model. One of the claimed advan-
tages of the relational model is the support of ad hoc queries and transactions,
whereas these are against the principle of encapsulation.

In practice, it is becoming commonplace to have database design teams apply
object-based methodologies at early stages of conceptual design so that both the
structure and the use or operations of the data are considered, and a complete spec-
ification is developed during conceptual design. These specifications are then
mapped into relational schemas, constraints, and behavioral artifacts such as trig-
gers or stored procedures (see Sections 5.2 and 13.4).
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11.4.2 Mapping an EER Schema to an ODB Schema

It is relatively straightforward to design the type declarations of object classes for an
ODBMS from an EER schema that contains neither categories nor n-ary relation-
ships with n > 2. However, the operations of classes are not specified in the EER dia-
gram and must be added to the class declarations after the structural mapping is
completed. The outline of the mapping from EER to ODL is as follows:

Step 1. Create an ODL class for each EER entity type or subclass. The type of the
ODL class should include all the attributes of the EER class.*® Multivalued attributes
are typically declared by using the set, bag, or list constructors. If the values of the
multivalued attribute for an object should be ordered, the list constructor is chosen;
if duplicates are allowed, the bag constructor should be chosen; otherwise, the set
constructor is chosen. Composite attributes are mapped into a tuple constructor (by
using a struct declaration in ODL).

Declare an extent for each class, and specify any key attributes as keys of the extent.
(This is possible only if an extent facility and key constraint declarations are avail-
able in the ODBMS.)

Step 2. Add relationship properties or reference attributes for each binary relation-
ship into the ODL classes that participate in the relationship. These may be created
in one or both directions. If a binary relationship is represented by references in
both directions, declare the references to be relationship properties that are inverses
of one another, if such a facility exists.* If a binary relationship is represented by a
reference in only one direction, declare the reference to be an attribute in the refer-
encing class whose type is the referenced class name.

Depending on the cardinality ratio of the binary relationship, the relationship prop-
erties or reference attributes may be single-valued or collection types. They will be
single-valued for binary relationships in the 1:1 or N:1 directions; they are collec-
tion types (set-valued or list-valued*!) for relationships in the 1:N or M:N direc-
tion. An alternative way to map binary M:N relationships is discussed in step 7.

If relationship attributes exist, a tuple constructor (struct) can be used to create a
structure of the form <reference, relationship attributes>, which may be included
instead of the reference attribute. However, this does not allow the use of the inverse
constraint. Additionally, if this choice is represented in both directions, the attribute
values will be represented twice, creating redundancy.

38This implicitly uses a tuple constructor at the top level of the type declaration, but in general, the tuple
constructor is not explicitly shown in the ODL class declarations.

39 urther analysis of the application domain is needed to decide which constructor to use because this
information is not available from the EER schema.

40The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS products
may not provide this support; in such cases, programmers must maintain every relationship explicitly by
coding the methods that update the objects appropriately.

“1The decision whether to use set or list is not available from the EER schema and must be determined
from the requirements.
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Step 3. Include appropriate operations for each class. These are not available from
the EER schema and must be added to the database design by referring to the origi-
nal requirements. A constructor method should include program code that checks
any constraints that must hold when a new object is created. A destructor method
should check any constraints that may be violated when an object is deleted. Other
methods should include any further constraint checks that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via
extends) the type and methods of its superclass in the ODL schema. Its specific
(noninherited) attributes, relationship references, and operations are specified, as
discussed in steps 1, 2, and 3.

Step 5. Weak entity types can be mapped in the same way as regular entity types. An
alternative mapping is possible for weak entity types that do not participate in any
relationships except their identifying relationship; these can be mapped as though
they were composite multivalued attributes of the owner entity type, by using the
set<struct<... >> or list<struct<... >> constructors. The attributes of the weak entity
are included in the struct<... > construct, which corresponds to a tuple constructor.
Attributes are mapped as discussed in steps 1 and 2.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is
possible to create a mapping similar to the EER-to-relational mapping (see Section
9.2) by declaring a class to represent the category and defining 1:1 relationships
between the category and each of its superclasses. Another option is to use a union
type, if it is available.

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class,
with appropriate references to each participating class. These references are based
on mapping a 1:N relationship from each class that represents a participating entity
type to the class that represents the n-ary relationship. An M:N binary relationship,
especially if it contains relationship attributes, may also use this mapping option, if
desired.

The mapping has been applied to a subset of the UNIVERSITY database schema in
Figure 8.10 in the context of the ODMG object database standard. The mapped
object schema using the ODL notation is shown in Figure 11.10.

11.5 The Object Query Language OQL

The object query language OQL is the query language proposed for the ODMG
object model. It is designed to work closely with the programming languages for
which an ODMG binding is defined, such as C++, Smalltalk, and Java. Hence, an
OQL query embedded into one of these programming languages can return objects
that match the type system of that language. Additionally, the implementations of
class operations in an ODMG schema can have their code written in these program-
ming languages. The OQL syntax for queries is similar to the syntax of the relational
standard query language SQL, with additional features for ODMG concepts, such as
object identity, complex objects, operations, inheritance, polymorphism, and rela-
tionships.
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In Section 11.5.1 we will discuss the syntax of simple OQL queries and the concept
of using named objects or extents as database entry points. Then, in Section 11.5.2
we will discuss the structure of query results and the use of path expressions to tra-
verse relationships among objects. Other OQL features for handling object identity,
inheritance, polymorphism, and other object-oriented concepts are discussed in
Section 11.5.3. The examples to illustrate OQL queries are based on the UNIVERSITY
database schema given in Figure 11.10.

11.5.1 Simple OQL Queries, Database Entry Points,
and lterator Variables

The basic OQL syntax is a select ... from ... where ... structure, as it is for SQL. For
example, the query to retrieve the names of all departments in the college of
‘Engineering’ can be written as follows:

QO0: select D.Dname
from D in DEPARTMENTS
where D.College = ‘Engineering’;

In general, an entry point to the database is needed for each query, which can be any
named persistent object. For many queries, the entry point is the name of the extent
of a class. Recall that the extent name is considered to be the name of a persistent
object whose type is a collection (in most cases, a set) of objects from the class.
Looking at the extent names in Figure 11.10, the named object DEPARTMENTS is of
type set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY is of type
set<FACULTY>; and so on.

The use of an extent name—DEPARTMENTS in Q0—as an entry point refers to a
persistent collection of objects. Whenever a collection is referenced in an OQL
query, we should define an iterator variable?>—D in Q0—that ranges over each
object in the collection. In many cases, as in QO, the query will select certain objects
from the collection, based on the conditions specified in the where clause. In QO,
only persistent objects D in the collection of DEPARTMENTS that satisfy the condi-
tion D.College = ‘Engineering’ are selected for the query result. For each selected
object D, the value of D.Dname is retrieved in the query result. Hence, the type of the
result for QO is bag<string> because the type of each Dname value is string (even
though the actual result is a set because Dname is a key attribute). In general, the
result of a query would be of type bag for select ... from ... and of type set for select
distinct ... from ... , as in SQL (adding the keyword distinct eliminates duplicates).

Using the example in QO, there are three syntactic options for specifying iterator
variables:

D in DEPARTMENTS
DEPARTMENTS D
DEPARTMENTS AS D

42This is similar to the tuple variables that range over tuples in SQL queries.
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We will use the first construct in our examples.*?

The named objects used as database entry points for OQL queries are not limited to
the names of extents. Any named persistent object, whether it refers to an atomic
(single) object or to a collection object, can be used as a database entry point.

11.5.2 Query Results and Path Expressions

In general, the result of a query can be of any type that can be expressed in the
ODMG object model. A query does not have to follow the select ... from ... where ...
structure; in the simplest case, any persistent name on its own is a query, whose
result is a reference to that persistent object. For example, the query

Q1: DEPARTMENTS;

returns a reference to the collection of all persistent DEPARTMENT objects, whose
type is set<DEPARTMENT>. Similarly, suppose we had given (via the database bind
operation, see Figure 11.8) a persistent name CS_DEPARTMENT to a single
DEPARTMENT object (the Computer Science department); then, the query

Q1A: CS_DEPARTMENT;

returns a reference to that individual object of type DEPARTMENT. Once an entry
point is specified, the concept of a path expression can be used to specify a path to
related attributes and objects. A path expression typically starts at a persistent object
name, or at the iterator variable that ranges over individual objects in a collection.
This name will be followed by zero or more relationship names or attribute names
connected using the dot notation. For example, referring to the UNIVERSITY data-
base in Figure 11.10, the following are examples of path expressions, which are also
valid queries in OQL:

Q2: CS_DEPARTMENT.Chair;
Q2A: CS_DEPARTMENT.Chair.Rank;
Q2B: CS_DEPARTMENT.Has_faculty;

The first expression Q2 returns an object of type FACULTY, because that is the type
of the attribute Chair of the DEPARTMENT class. This will be a reference to the
FACULTY object that is related to the DEPARTMENT object whose persistent name is
CS_DEPARTMENT via the attribute Chair; that is, a reference to the FACULTY object
who is chairperson of the Computer Science department. The second expression
Q2A is similar, except that it returns the Rank of this FACULTY object (the Computer
Science chair) rather than the object reference; hence, the type returned by Q2A is
string, which is the data type for the Rank attribute of the FACULTY class.

Path expressions Q2 and Q2A return single values, because the attributes Chair (of
DEPARTMENT) and Rank (of FACULTY) are both single-valued and they are applied
to a single object. The third expression, Q2B, is different; it returns an object of type
set<FACULTY> even when applied to a single object, because that is the type of the

43Note that the latter two options are similar to the syntax for specifying tuple variables in SOL queries.
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relationship Has_faculty of the DEPARTMENT class. The collection returned will
include references to all FACULTY objects that are related to the DEPARTMENT object
whose persistent name is CS_DEPARTMENT via the relationship Has_faculty; that is,
references to all FACULTY objects who are working in the Computer Science depart-
ment. Now, to return the ranks of Computer Science faculty, we cannot write

Q3'": CS_DEPARTMENT.Has_faculty.Rank;

because it is not clear whether the object returned would be of type set<string> or
bag<string> (the latter being more likely, since multiple faculty may share the same
rank). Because of this type of ambiguity problem, OQL does not allow expressions
such as Q3'. Rather, one must use an iterator variable over any collections, as in Q3A
or Q3B below:

Q3A: select FERank
from F in CS_DEPARTMENT.Has_faculty;

Q3B: select distinct F.Rank
from F in CS_DEPARTMENT.Has_faculty;

Here, Q3A returns bag<string> (duplicate rank values appear in the result), whereas
Q3B returns set<string> (duplicates are eliminated via the distinct keyword). Both
Q3A and Q3B illustrate how an iterator variable can be defined in the from clause to
range over a restricted collection specified in the query. The variable F in Q3A and
Q3B ranges over the elements of the collection CS_DEPARTMENT.Has_faculty, which
is of type set<FACULTY>, and includes only those faculty who are members of the
Computer Science department.

In general, an OQL query can return a result with a complex structure specified in
the query itself by utilizing the struct keyword. Consider the following examples:

Q4: CS_DEPARTMENT.Chair.Advises;

Q4A:  select struct ( name: struct (last_name: S.name.Lname, first_name:
S.name.Fname),
degrees:( select struct (deg: D.Degree,
yr: D.Year,
college: D.College)
from D in S.Degrees ))
from S in CS_DEPARTMENT.Chair.Advises;

Here, Q4 is straightforward, returning an object of type set<GRAD_STUDENT> as
its result; this is the collection of graduate students who are advised by the chair of
the Computer Science department. Now, suppose that a query is needed to retrieve
the last and first names of these graduate students, plus the list of previous degrees
of each. This can be written as in Q4A, where the variable S ranges over the collec-
tion of graduate students advised by the chairperson, and the variable D ranges over
the degrees of each such student S. The type of the result of Q4A is a collection of
(first-level) structs where each struct has two components: name and degrees.**

44As mentioned earlier, struct corresponds to the tuple constructor discussed in Section 11.1.3.
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The name component is a further struct made up of last_name and first_name, each
being a single string. The degrees component is defined by an embedded query and
is itself a collection of further (second level) structs, each with three string compo-
nents: deg, yr, and college.

Note that OQL is orthogonal with respect to specifying path expressions. That is,
attributes, relationships, and operation names (methods) can be used interchange-
ably within the path expressions, as long as the type system of OQL is not compro-
mised. For example, one can write the following queries to retrieve the grade point
average of all senior students majoring in Computer Science, with the result ordered
by GPA, and within that by last and first name:

Q5A: select struct ( last_name: S.name.Lname, first_name: S.name.Fname,

gpa: S.gpa )
from S in CS_DEPARTMENT.Has_majors
where S.Class = ‘senior’
order by gpa desc, last_name asc, first_name asc;

Q5B: select struct ( last_name: S.name.Lname, first_name: S.name.Fname,

gpa: S.gpa )
from S in STUDENTS
where S.Majors_in.Dname = ‘Computer Science’ and
S.Class = ‘senior’
order by gpa desc, last_name asc, first_name asc;

Q5A used the named entry point CS_DEPARTMENT to directly locate the reference
to the Computer Science department and then locate the students via the relation-
ship Has_majors, whereas Q5B searches the STUDENTS extent to locate all students
majoring in that department. Notice how attribute names, relationship names, and
operation (method) names are all used interchangeably (in an orthogonal manner)
in the path expressions: gpa is an operation; Majors_in and Has_majors are relation-
ships; and Class, Name, Dname, Lname, and Fname are attributes. The implementa-
tion of the gpa operation computes the grade point average and returns its value as
a float type for each selected STUDENT.

The order by clause is similar to the corresponding SQL construct, and specifies in
which order the query result is to be displayed. Hence, the collection returned by a
query with an order by clause is of type list.

11.5.3 Other Features of OQL

Specifying Views as Named Queries. The view mechanism in OQL uses the
concept of a named query. The define keyword is used to specify an identifier of the
named query, which must be a unique name among all named objects, class names,
method names, and function names in the schema. If the identifier has the same
name as an existing named query, then the new definition replaces the previous def-
inition. Once defined, a query definition is persistent until it is redefined or deleted.
A view can also have parameters (arguments) in its definition.
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For example, the following view V1 defines a named query Has_minors to retrieve the
set of objects for students minoring in a given department:

V1: define Has_minors(Dept_name) as
select S
from S in STUDENTS
where  S.Minors_in.Dname = Dept_name;

Because the ODL schema in Figure 11.10 only provided a unidirectional Minors_in
attribute for a STUDENT, we can use the above view to represent its inverse without
having to explicitly define a relationship. This type of view can be used to represent
inverse relationships that are not expected to be used frequently. The user can now
utilize the above view to write queries such as

Has_minors(‘Computer Science’);

which would return a bag of students minoring in the Computer Science depart-
ment. Note that in Figure 11.10, we defined Has_majors as an explicit relationship,
presumably because it is expected to be used more often.

Extracting Single Elements from Singleton Collections. An OQL query will,
in general, return a collection as its result, such as a bag, set (if distinct is specified), or
list (if the order by clause is used). If the user requires that a query only return a sin-
gle element, there is an element operator in OQL that is guaranteed to return a sin-
gle element E from a singleton collection C that contains only one element. If C
contains more than one element or if C is empty, then the element operator raises
an exception. For example, Q6 returns the single object reference to the Computer
Science department:

Q6: element (select D
from D in DEPARTMENTS
where D.Dname = ‘Computer Science’ );

Since a department name is unique across all departments, the result should be one
department. The type of the result is D:DEPARTMENT.

Collection Operators (Aggregate Functions, Quantifiers). Because many
query expressions specify collections as their result, a number of operators have been
defined that are applied to such collections. These include aggregate operators as well
as membership and quantification (universal and existential) over a collection.

The aggregate operators (min, max, count, sum, avg) operate over a collection.*> The
operator count returns an integer type. The remaining aggregate operators (min, max,
sum, avg) return the same type as the type of the operand collection. Two examples
follow. The query Q7 returns the number of students minoring in Computer
Science and Q8 returns the average GPA of all seniors majoring in Computer
Science.

45These correspond to aggregate functions in SQL.
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Q7: count ( S in Has_minors(‘Computer Science’));

Q8: avg ( select S.Gpa
from Sin STUDENTS
where S.Majors_in.Dname = ‘Computer Science’ and
S.Class = ‘Senior’);

Notice that aggregate operations can be applied to any collection of the appropriate
type and can be used in any part of a query. For example, the query to retrieve all
department names that have more than 100 majors can be written as in Q9:

Q9: select D.Dname
from D in DEPARTMENTS
where count (D.Has_majors) > 100;

The membership and quantification expressions return a Boolean type—that is, true
or false. Let V be a variable, C a collection expression, B an expression of type
Boolean (that is, a Boolean condition), and E an element of the type of elements in
collection C. Then:

(Ein C) returns true if element E is a member of collection C.
(forall Vin C: B) returns true if all the elements of collection C satisfy B.
(exists Vin C: B) returns true if there is at least one element in C satisfying B.

To illustrate the membership condition, suppose we want to retrieve the names of
all students who completed the course called ‘Database Systems I’. This can be writ-
ten as in Q10, where the nested query returns the collection of course names that
each STUDENT S has completed, and the membership condition returns true if
‘Database Systems I’ is in the collection for a particular STUDENT S:

Q10: select S.name.Lname, S.name.Fname
from Sin STUDENTS
where  ‘Database Systems I in
(select C.Section.Of_course.Cname
from C in S.Completed_sections);

Q10 also illustrates a simpler way to specify the select clause of queries that return a
collection of structs; the type returned by Q10 is bag<struct(string, string)>.

One can also write queries that return true/false results. As an example, let us
assume that there is a named object called JEREMY of type STUDENT. Then, query
Q11 answers the following question: Is Jeremy a Computer Science minor? Similarly,
Q12 answers the question Are all Computer Science graduate students advised by
Computer Science faculty? Both Q11 and Q12 return true or false, which are inter-
preted as yes or no answers to the above questions:

Q11: JEREMY in Has_minors(‘Computer Science’);

Q12: forall Gin
(select S
from S in GRAD_STUDENTS
where  S.Majors_in.Dname = ‘Computer Science’ )
: G.Advisor in CS_DEPARTMENT.Has_faculty;
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Note that query Q12 also illustrates how attribute, relationship, and operation
inheritance applies to queries. Although S is an iterator that ranges over the extent
GRAD_STUDENTS, we can write S.Majors_in because the Majors_in relationship is
inherited by GRAD_STUDENT from STUDENT via extends (see Figure 11.10). Finally,
to illustrate the exists quantifier, query Q13 answers the following question: Does
any graduate Computer Science major have a 4.0 GPA? Here, again, the operation gpa
is inherited by GRAD_STUDENT from STUDENT via extends.

Q13: exists G in
(select S
from Sin GRAD_STUDENTS
where S.Majors_in.Dname = ‘Computer Science’ )
: G.Gpa = 4;

Ordered (Indexed) Collection Expressions. As we discussed in Section 11.3.3,
collections that are lists and arrays have additional operations, such as retrieving the
ith, first, and last elements. Additionally, operations exist for extracting a subcollec-
tion and concatenating two lists. Hence, query expressions that involve lists or
arrays can invoke these operations. We will illustrate a few of these operations using
sample queries. Q14 retrieves the last name of the faculty member who earns the
highest salary:

Q14: first ( select struct(facname: F.name.Lname, salary: F.Salary)
from Fin FACULTY
order by salary desc );

Q14 illustrates the use of the first operator on a list collection that contains the
salaries of faculty members sorted in descending order by salary. Thus, the first ele-
ment in this sorted list contains the faculty member with the highest salary. This
query assumes that only one faculty member earns the maximum salary. The next
query, Q15, retrieves the top three Computer Science majors based on GPA.

Q15: ( select struct( last_name: S.name.Lname, first_name: S.name.Fname,
gpa: S.Gpa )
from S in CS_DEPARTMENT.Has_majors
order by gpa desc ) [0:2];

The select-from-order-by query returns a list of Computer Science students ordered
by GPA in descending order. The first element of an ordered collection has an index
position of 0, so the expression [0:2] returns a list containing the first, second, and
third elements of the select ... from ... order by ... result.

The Grouping Operator. The group by clause in OQL, although similar to the
corresponding clause in SQL, provides explicit reference to the collection of objects
within each group or partition. First we give an example, and then we describe the
general form of these queries.

Q16 retrieves the number of majors in each department. In this query, the students
are grouped into the same partition (group) if they have the same major; that is, the
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same value for S.Majors_in.Dname:

Qi16: ( selec